St. Ann’'s College of Engineering & Technol ogy

UNIT T 1
1. ABSTRACT DATA TYPE (ADT)
An ADT refers to a set of data values and associated operations that are specified

accurately. ADT consists of set of definitions that allow usge the function while hiding the
implementatior(i.e.; ADT is independent of implementation)

ADT model: The representation of the ADT model is shown below
ADT consists of two different parts:

1) Data Structures
2) Functions

1 Data Structures and Functiodso N 0 t @=O=frEm—
within the scope of Application Program.

1 Data Structures are available to all of the
ADT functions i.e. Data Structures and
Functions are within the scope of each
other.

1 The programming interface can only
access public functions.

1 For each ADT opration, theg is an
algorithm that performs specific task.

1 Only operation name and parameters are ADT Model
available to application program but
implementation is hidden.

Apclication Program

Usta Structures

AN INTRODUCTION TO C++ CLASS

C++ provides an explicit mechanism, the class, to supportistiaation between specification

and implementation and to hide the implementation of an ADT from its users. However, ti is the
programmer s responsibility to wuse the <cl ass
represent an ADT. The C++ class smmts of four components:

1) a class name: (e.g. Rectangle)
2) Data members: the data that makes up the class (e.g. x1, y1, h and w).

3) Member functions: the set of operations that may be applied to the objects of a class (e.g.
GetHeight(), Getwidth()).

4) Levels of program access: these control the level of access to data members and member

functions from program code that is outside the class. There are three levels of access to class

members: public, protected and private.

Any public data member (memb&unction) can be accessed (invoked) from anywhere in the
program. A private data member (member function) can only be accessed (invoked) from within
its class or by a function or a class that is declared to be a friend. A protected data member
(member function) can only be accessed (invoked) from within its class or from its subclasses or
by a friend.

/l In the header file Rectangle.h
class Rectangle {
public: /I the following members are public
/l The next four members are member functions
Rectangle(); / constructor
“Rectangle(); // desauctor
int GetHeight(); // returns the height of the rectangle
int GetWidth(); // returns the width of the rectangle
private: // the following members are private
// the following members are data members
int x1, y1, A, w;
// (x1, y1) are the coordinates of the bottom left corner of the rectangle
/I w is the width of the rectangle; h is the height of the rectangle
b

Program 1: Definition of the C++ class Rectangle

St. Ann’'s College of Engineering & Techno2l ogy

DATA ABSTRACTION AND ENCAPSULATION IN C++

Data encapsulation is enforced in C++ by declaring all data members of a class to be
private (or protected). External access to data members, if required, can be achieved by
defining member functions that get and set data members. In Program 2.1, GetHeight()
and GetWidth() are used to access the private data members h and w. Member functions
that will be invoked extemally are declared public; all others are declared private or
protected.

Next, we discuss how the specification of the operations of a class is separated
from their implémentation in. C++. The specification, which must be contained inside the
public portion of the class definition of the ADT, consists of the names of every public
member function, the type of its arguments, and the type of its result (This information
about a function is known as its function prototype). There should also be a description

of what the function does, which does not refer to the internal representation or imple-
mentation details. This requirement is quite important because it implies that an abstract
data type is implementation-independent. This description may be achieved in C++ by
using comments to describe what each member function does (like the VCR instruction
manual mentioned in Chapter 1). Finally, the specification of an operation is physically
separated from its implementation by placing it in an appropriately named header file
(e.g. the contents of Program 2.1 are placed in Rectangle.h). The implementations of the
functions are typically placed in a source file of the same name (e.g. the contents of Pro-
gram 2.2 are placed in Rectangle.C). Note that C++ syntax does allow you to include
the implementation of a member function inside its class definition. In this case, the
function is treated as an inline function.

// In the source file Rectangle.C
#include "Rectangle.h”

// The prefix "Rectangle::" identifies GetHeight() and GetWidth() as member functions
/I beluiing to class Rectangle. It is required because the member functions
/I are implemented outside their class definition

int Rectangle::GetHeight() { return h;})
int Rectangle::GetWidth() { return w;}

Program 2.2: Implementation of operations on Rectangle
DECLARING CLASS OBJECTS AND INVOKING MEMBER FUNCTIONS

Program 2.3 shows a fragment of code that illustrates how class objects are declared and
how member functions that operate on these class objects are invoked. Class objects are
declared and created in the same way that variables are declared or ereated. Members of
an object are accessed or invoked by using the component selection operators, a dot (.)
for direct component selection and an arrow (->), which we will write as —, for indirect
component selection through a pointer.

// In a source file main.C
#include <iostream.h>
#include "Rectangle.h”

main() {
Rectangle r, s; /I r and s are objects of class Recrangle
Rectangle *t = &s; // t is a pointer to class object s

/I use - to access members of class objects.

/I use — to access members of class objects through pointers.

if (r.GetHeight () * r.GetWidth () > t =>GetHeight () * t -GetWidth ())
cout << "r";

else cout << "s";

cout << "has the greater area" << endl;

}

Progralil 2.3: A C++ code fragment demonstrating how Rectangle objects are declared
and member functions invoked

St. Ann’'s College of Engineering & Technal ogy

SPECIAL CLASS OPERATIONS

Constructors and Destructors: The constructor and destructor are special member functions of

a class. A constructor is a membeanction which initializes data members of an object. If a
constructor is provided for a class, itagtomatically executed when an object of that class is
created. If a constructor is not defined for a class, memory is alldoatdee data members of a

class object, when it is created, but the data members are not initialized. The advantage of
defining constructors for a class is that all class objects aredeBified as soon as they are
created. This eliminates errors that result from accessing an undefined object. A destructor is a
member function which deletes data members immediately beforebjbet aisappears. A
constructor and destructor for class Rectangle are declared in program 2.1.

A constructor must be declared as a public member function of its class; The name of a
constructor must be identical to the name of the class to which it Iseland a constructor must

not specify a return type or return a value. Program 2.4 shows a constructor definition for class
Rectangle.

Rectangle::Rectangle(int x, int y, int height, int width)
{

xl=x;yl=y;
h = height ; w = width ;
)

Program 2.4: Definition of a constructor for Recrangle

Constructors may be used to initialize Rectangle objects as follows:

Rectangle r(1, 3, 6, 6);
Rectangle *s=newWRectangle(0, 0, 3, 4);

These create r, a square of side 6 whose bottom left corner is at (1,3); and s, a pointer to a
Rectangle object of height 3 and width 4 whose bottom left corner is at the origin.

Destructors are automatically invoked when a classoblyjoes out of scope or when a class
object is deleted. Like a constructor, a destructor must be declared as a public member of its
class; its name must be identical to the name of its class prefixed with a tilde (~); a destructor
must not specify a retartype or return a value, and a destructor may not take arguments. If a
destructor is not defined for a class, the deletion of an object of that class results in the freeing of
memory associated with data members of the class. If a data member is atpaotae other

object, the space allocated to the pointer is returned, but the object that it was pointing to is not
deleted. If we also wish to delete this object, we must define a destructor that explicitly does so.

Operator Overloading: Consider the operator == which is used to check for equality
between two data items. The operator == may be used to check for equality between two
float data items; it can also be used to check for equality between two int items. The
hardware algorithms implementing operator == depend on the type of the operands be-
ing compared; that is, the algorithm for comparing two floats is different from the one
used to compare two ints. This is an example of operator overloading. However, if we
were to try to use operator == to check for equality between two Rectangle objects, the
compiler would complain that operator == is not defined for Rectangle objects. C++ al-
lows the programmer to overload operators for user-defined data fypes. This is done by
providing a definition that implements the operator for the particular data type. This
definition takes the form of a class member function or an ordinary function, depending
on the operator. The function prototype used must adhere to the spycifications for the
particular operator. For details about the specifications for various operators, see one of
the introductory texts listed at the end of this chapter.

Program 2.6 overloads operator == for class Rectangle. Our program uses the this
pointer which we describe briefly: The C++ keyword this, when used inside a member
function of a class, represents a pointer to the particular class object that invoked it. The
class object, itself, is therefore represented by *this.

St. Ann’'s College of Engineering & Technol ogy

int Recmngle::operator::i (const Rectangle& s)

{
if (this == &s) return | ;
if((x] ==s5.x1) && (v ==s5.v1) && (h == s5.h) && (w==5s.w))return | ;
else return 0 ;

}

Program 2.6: Overloading operator== for class Rectangle

We can now use the operator o=determine whether two rectangles are identical. Our program
first evaluates the expression fAthis== &so.
being compared are the same object.

Program 2.7 overloads operator << so that Rectangle obgttsecoutput by using cout.

ostream& operator<< (ostream& os, Rectangle& r)
{

os << "Position is: "<<rxl <<" "

os<<r.yl <<endl ;

os << "Height is: " << r.h << endl ;

o0s << "Width is: " << r.w << endl ;

return os ;

}

Program 2.7: Overloading operator<< for class Rectangle

Noticethat operator << accesses private data members of class Rectdegifore it must be
made a friend of Rectangle.

MISCELLANEOUS TOPICS

In C++, a struct is identical to a class, except that the default level of access is public:
that is, if the struct definition of a data type does not specify whether a given member
(data or function) has public, private, or protected access, then the member has public
access. In a class, the default is private access. Thus, the C++ struct is a generalization
of the C struct.

A union is a structure that reserves storage for the largest of its data members so
that only one of its data members can be stored, at any time. This is useful in applica-
tions where it is known that only one of many possible data items, each of a different
type, needs to be stored in a structure; but there is no way to know what that data type is
until runtime. The struct or class structures reserve memory for all their data members.
Thus, using a union results in a more memory-efficient program, in these cases. We will
use union in Chapter 4 on linked lists; we will also study a technique for improving on
union by using inheritance.

A static class data member may be thought of as a global variable for its class.
From the perspective of a class member function, a static data member is like any other
data member. One difference is that each class object does not have its own exclusive
copy. There is only one copy of a static data member and all class objects must share it.
A second difference is that the declaration of a static data member in its class does not
constitute a definition. Consequently, a definition of the data member is required some-
where else in the program. We will see an example of a static class member later in this
chapter, when we implement the Polynomial data type.

ADTs and C++CLASSES

Note that there is one significant aspect in which the format of ADT differs from the C++ class;
some operators in C++ such as operator <<, when overloaded fatefisead ADTs, do not

exist as member functions of the corresponding class. Rather, thesdoos exist as ordinary
C++ functions.Thus, these operations are declared outside the C++ class definition of the ADT
even though they are actually part of the ADT.

St. Ann’'s College of Engineering & Technol ogy

2.DATA STRUCTURE

A data structureis a systematic way of organizing and accessing data.
Data may be organized in many different ways.
The logical or mathematical model of a particular organization of data is called a Data structure.

A data structurdries to structure data
A Usually morelan one piece of data
A Should define legal operations on the data
A The data might be grouped together (e.g. in an linked list)

Types of Data Structures:
Data Structures are broadly classified into two types:
1. Linear Data Structure 2. Non Linear Datétructure

1. Linear Data Structures
Definition: A data structure is said to bdinear if its elements form a sequence dimear list.
Examples:

1 Array

T Linked List

1 Stacks

1 Queues

2. NonLinear Data Structures
Examples: Trees Graphs

Operations onLinear and Non Linear Data Structures
T Traversal: Visit every part of thelata structure
Search: Traversal through the data structure for a given element
Insertion: Adding new elements to tliata structure
Deletion:Removing an element from tldatastructure
Sorting: Rearranging the elements in some type of order(e.g Increasing or Decreasing)
Merging: Combining two similadatastructures into one

=A =4 =4 =4 4

3. Arrays
The simplest type of data structure is an array. Array is a list of finite number of homogeneous
data elements such that
a) The elements of array are referred respectively by an index.
b) The elements in an array are stored respectively in successive menabigni.c
c) El ements of an aA[{&®Y ,O0A) 1dre Adinotee&d ,adn[r

In the notation A[K]
k is called a subscript
A[K] is called variable or subscript value.

Eg: Let OAOG be a 0606 el ement array of integers
200A[4]=6, A[5]=8

AA |247|30|2|200(6 |8
0O 1 2 3 4 5

3.1Arrays as ADT
An array is a fundamental abstratzta type. Each instance of an array is a set of pairs of the
form <index, value>. No two pairs in this set have same index.
Operations: Operations performed on the array are,
1) Create an arrayThis operation creates and initializes an array.
2) GetanelemenGet 6s the value of the pair that h
3) Set an elemeniAdds a pair of the form<indexalue> to tle array and if a pair with
thesame index already exists it deletes the old pair.
4) Insert an element:Adds a pair of the form<index, value> tioe array and if a pair
with thesame index already exists, move h# £lements to the next positifrast to
the given index) and element is inserted in given index.

St. Ann’'s College of

5) Remove an elemerideletes an element at given index.

Engineering

& Technol ogy

6) Search an elemenE i n d 0 sen kelénent gyi comparing all elements in an array
and ifelement idound, itreturns index of that element. Otherwise, it retufins

7) Display elementsDisplays all elements of an array.
8) Attributes:Displays attributes of an array.
9) Sort: Sorts all elements an array.

3.2.ADT Specification of an array

ADT Array
Set of <index, value>
No two pairs have same index
Data Structures
Type *a;
int size;
Operations
void create(s)This operation creates and initializes an array.
void set(i, v):Adds a pair of the form<index, value> to the array and
pair with the same index already exists it deletes the old pair.
Typeget()Get 6s the value of the pai
intsearch(v);Fi nddés t he gi paimgaleelemantsin &n
array and if element is found, it returns index of that element. Otherw
returns-1.
void display():Displays all elementsf@n array.
End Array

3.3Implementation of an Array ADT using C++

template<class T>

class Array

{
T *a,;
int size;

public:

void create(int s);
void set(int i, T v);
T get(int i);
int search(T v);
void display();

J

) Creating an array: This operation creates and initializes an array.

template<class T>
void Array<T> : : create(int s)
{

a= new T[s];

size=s;

In main,if we call
al. create(8)

St. Ann’'s College of Engineering & Techno/l ogy
aA
01 2 3 45 6 7
size= 8
i) Set an elementAdds a pair of the form<index, value> to the array and if a pair with

thesame index already exists it deletes the old pair.

template<class T>
void Array<T> : : set(int i, int
{
if(i< size)
alil=v;
else

v)

cout <<oO0Array

}

out

In main, if we call
al. set(0, 18);

aA |18

al. set(1, 25);

aA |18 |25

0 1 2

al. set(2, 11);

aA [18]25]11

0 1 2

iii) GetanelementGet 6s t he

v al

ue

template<class T>
T Array<T>:: get(int i)
{

return(ali]);

In main, if we call,
al.get(1)----------------- 25 is the value returned.

iv) SearchanelementFi ndds t he

of

gi ven

t

he

pai

el ement
and if element is found, it returns index of that element. Otherwise, it returns

{

template<class T>

int array<T>: : search(T v)

for(inti=0; i < size; i++)
if(afi]==v)
{
return i ;
}
else
return -1

r

by

t hat

h

cComp

St. Ann’'s College of Engineering

In main, if we call
al. search(18);
aA |18|25|11

0O 1 2 3 4 5 6 7
vA 18
returnsindex 0O

V) Display an element:Displays all elements of an array.

template<class T>
void array<T>: : display()
{
for(int i=0; i< size; i++)
cout<< afij<< end | ;
}
In main, if we call
al. display()
aA |18| 25|11
0O 1 23 4 5 6o
Resultis 18
25
11

4. Polynomial
Polynomial is a sum of term&here eaclnas a form @

wherxed i s a
faod i s
neo i s

Ex: A(X)=ow Cw T
Bx)=w pm o0+l

& Technadl ogy

i abl e,
coef fici

ent

exponent .

The largesexponent of a polynomial =alledits degree. Polynomial care generalizedhto

Qw B o

Coefficient that are zero are ndisplayed The terms with exponents equal to zero doas

show the variable, sincé x 1.

4.1.Polynomial Representation
Polynomial may beepresentedsingarray (or) linked lists.

Polynomial asArray Representation

It is assumed that exponent of a expression are arranged from O to highestegabes(

which is represented by subscripts(inderf respective exponents are ¢ged at appnoriate

index in the array.
Ex: PX)=40 o0

P=19 |0 |6 |4
o 1 2 B

REPRESENTATION-1:
n ® o ow G @
n w=20 pew o
n o p@® ow W @

n [6 [2]3]8
o 1 2

St. Ann’'s College of Engineering & Technol ogy

n= [-3]18]0 [0]2
o 1 2 3

po [6]2]0]0]0 [-3][------ 16
o 1 2 3 4 5

Advantages ofRepresentation1

1. Only good for non spare polynomials.
2. Easy of storage and retrival.

Disadvantages of Representaionl

1. Have to allocate array size ahead of times.
2. Huge array size is required for spares polynomials, waster of space.

REPRESENTATION -2:
We call this typeof representatioras double array representation.

EXx:
n Yw p@®@ T pPEWB Lw O

N T pm pQ Y

pl.start

coet | 8 |18]-41[163]-5|3 |4 [10]12]8

Exp

Advantages of Representation2:

1. This type of representation saves space.

Disadvantages of Representatiof:

1. Difficult to maintain.
2. More code required for polynomial operations like addition, subtraation,

4.3 Operations performed on Polynomials

i) Create a polynomial: This function creates dynamic array of coefficiant initializes it to
zero.

i) Reading a polynomial Creates an array dynamically and reads coefficient of all exponents
in a polynomial.

i) Set a coefficient:It sets the coefficient in the polynomialagiven exponerindex).

iv) Get a coefficient:Returns a cefficient at a given index (or) a exponent.

v) Degree:Returns degree of the polynomial.

vi) Evaluate:tEval uate the polynomial for a given

vii) Add: Adds one polynomial to another polynomial.

viii) Subtract: Subtracts one polynomial to another polynomial.

ix) Multiply: Multiplies two polynomials.

X) Multiply by constant: Multiply one polynomial bygiven constant.

xi) Equals: Check equality of two polynomials.

xii) Derivative: Computegerivateof a polynomial.

xiii) Integrate: Compute integration of a polynomial.

v al

St. Ann’'s College of Engineering & Technll ogy

4.4.Polynomial asADT

ADT Polynomial
Sum of KWQ

where®;6 s caeffiiensand Q6 s eaponers
Data structures
Type *coefficient;
int deg;
Operations
void createpoly (int d) create dynamic array & construct zero polynomial.
void readpoly (int d)creates dynamic array & reads coefficient from user.
void secoeff (Type coef, int ex)sets a coefficient at a given exponent (index).
void getcoeff (int ex)Retrives coefficient at a given index.
int degree(): retrieves degree of a polynomial.
Type evaluate (int x)Evaluate a polynomial by given
Polynomial addpoly(polynomial A, polynomial Badd two polynomials.
Polynomial subpoly(polynomial A, polynoral B): subtract two polynomials
Polynomial mulpoly(polynomial A, polynomial Bmultiply two polynomials
void displayoly():di spl ays polynomial such that
End polynomial.

4.5.Polynomial implementation usingC++

template <class t>
Class ly
{
T *coef;
int deg;
public:
void createpoly(int d);
void reagboly(int d);
void setoeff(T ¢, int e);
T getoeff (int e);
Poly addpoly(Poly A, Bly B);
void display ();

I3
i) Creating a polynomial: This function creates a dynamiaay of coefficientof size
degree +1 and createsro polynomial.
template <class T>
void Poly <T>::createpoly (int d)
{
coef=new T[d+1];
deg=d;
for(inti=0;i<=deg;i++)
coefll]=0;
}
In main function; we call
p.createoly (4);
coef O |0[{0|0 |O
0 1 2 3 4
deg=4
i) Reading a polynomial This function eads aoefficient from user and place in the

coef array.

St. Ann’'s College of Engineering & Techndll ogy
template <class T>
void Poly<T>::reagoly()
{
for(int i=0; i<=deg;i++)
{
cout<<oenter coef fo
cin >>coeffi];
}
}
In main
0O |o|lOo|0O |O
p.readpoly();
o 1 2 3 4
then,
_ s | s |oO o|o
at i=0; enter coef for exponent 0 =of
5 o 1 3 4
ati=1; enter coef for exponent 1 = 2100 o
2 coef
] 1 2 3 a
at i=2; enter coef for exponent2 coef s |[2|0]0 |0
0
o 1 2 3 4
at i=3; entercoeffor exponent 3 coef 51201010
0
o 1 2 3 4
at i=4; enter coef for exponent4 coef 5 |2/0]0)3
3 o 1 2 3 a

iii) Displaying a polynomial: This function displays the polynomial such that zero

coefficient terms are not displayed.

template <class T>
void Poly <T>:display(
{
for(inti=deg;i>=0; i--)
{
if (coef [i] 1=0)
cout <<coef[i]d
if (i'=0)
cout <<0+0;
}
}
}

For above exampléhe output produced is as follows

Ati=3 ------ >3 XM+

At i=2 ---—--- >3 XM+

Ati=1 ------ >3 XM+ 2x M+
Ati=0 ------ >3xM+2x"MN+5

iv) Set a coefficient This function sets coefficient of a given exponentieal

St. Ann’'s Coll ege

of Engineering

{
}

coef[e]=c;

template <class T>
void Poly<T>::setcodT c, int @

In main, if we call
p.set (11,1)

then, coef[1] is set to 11;

v)

& Technd2l ogy

coef S

0[0]3

0 1

template <classT>
T poly<T>::getcoef(int e)
{

}

return coefle];

In main,if we call
p.getoef(4)

then,3 will be returned Since,coef [4] is 3)

Vi)
sum of two polynomial.

2 3 4

Get coefficient: This function retrives a coefficient at a given index (or) exponent.

coef

coef[i]=A.coef[i]+B.coef[i];

template <lassT>
Poly Poly<T>:addpolyfPoly A, Roly B)
{
if (A.deg>Bdeg)
deg=Adeg;
else
deg=Bdeg;
creat@oly(deg);
for(int i=0;i<=deg;i++)
return *this;
}

Let us consider two polynomial P & Q

P=3b cw vl Q=20 ow Tw p
P canbe representeas
P.coef 5| 2 0
P.deg=4 0 1 3
Q can be represented as
Q.coef 1 3|0
Q deg=4 1 2 3

Addition of two Polynomials: This function adds two polynomial and returns the

St. Ann’'s College of Engineering & Technd3 ogy

In main function , if we call
R.adgloy(P,Q) then P,Q polynommlare copied to A&, and the sum of two
polynomials is as follows:

Now, R.deg=-max (P.degree, Qegree)=4

R.coef 6 | 6 3 0
R.deg =4 0 1 2 3 4

5. SPARSEMATRICES

A sparse matrix is enatrix having relatively small number of naero elements. Sparse
matrix is a 2D array in which most of the elements have null value or zero. It is wastage of
memory and processing time if we store null value of matrix in array.

A spase matrix is matrixn which numberof zero elements are more than numbégr
non-zero elements.

Ex: Diagonal Matrices, Lower triangular matrices etc.,
230
000

01 0 is sparse matrix.

Sparse Matrixcan be represented using Triphetd Linked List.

5.1.Representationusing Triplet

Rows [Columns] Values

90
00
0 o| mp>
05
00

St. Ann’'s College of Engineering & Techndd ogy

Let us consideanothersparse matrix
230
000
050

Sparse maik can be represented usiagayof triples<row, colvalue>.Scan norzero elements
of Sparse Matrix in row major ordefcach norzero element is represented by triple<row, col,
value>.The following is the sparse matrix representation:

row col value

o] 3
{1 o
2] 0
3] 2

PP, OW
wWN W

5

Thus, t[0].row contains max no. of rows; t[0].col contains max. no. columns; t[0].value contains
total no. of norezero elements. Positions 1 to 3 store the triples representingenoantries.

The row index is in the field row; the column index is in the field col; and the value is in the field
value

classTerm
{
public:
int row;
int col;
int value;
%
class SparseMatrix
{
Term t[20];
e éé
%

Here each terns a triple <row,col,value>
5.2 Sparse Matrix ADT

ADT SparseMatrix
A set of triples, <row, col, value>, where row and col are integers and form a uniqug
combination.

Data Structures
Term t[10];-Array of Terms where Term is <row, col, val>
Operations

void create(n): creates a SparseMatrix that can hold n-pero elements

information.

SparseMatrix tansposef): return the matrix produced by interchanging the r
and column value of every triple.

SparseMatrix ad(A,B): if dimensions of a and b are the same return the
matrix produced by corresponding items, namely
those with identical row and column values else
return error.

SparseMatrix nultiply(A,B): if number of columns in a equals number of rows|
B return the matribD produced by multiplying A by
B according to the forma: DJi][j]=
e (A[i][kwhersi[i the (ilj)Xh

element else return error.

End SparseMatrix

St. Ann’'s College of Engineering & Techndsl ogy

5.3 Sparse Matrix Transpose
To transpose a matrix we must interchange the rows and columns.

Example:matrix A

0] 15 0 0 22 0 -15

1] 0 11 3 0 0 0

2| 0 0 0 -6 0 0

3| 0 0 0 0 0 0

4 91 0 0 0 0 0

5] 0 0 28 0 0 0

row col value row col value

A.t[0] 6 6 8 B.t[0] 6 6 8
[1] O 0 15 [1] O 0 15
[2] O 3 22 [2] O 4 91
[38] O 5 -15 [38] 1 1 11
[4] 1 1 11 [4] 2 1 3
[5] 1 2 3 [5] 2 5 28
[6] 2 3 -6 [6] 3 0 22
[7] 4 0 91 [7] 3 2 -6
[8] 5 2 28 [8] 5 0 -15

For instance, in the above example

(0,0,15) which becomes (0,0,15)
(0,3,22) which becomes (3,0,22)
(0,5515) which becomes (5,0;15)

If we place these triples consecutively in the transpose matrix, then as we insert new
triples, we must move elements to maintain the correct order. We can avoid this data movement
by usng the column indices to indices to determine the placement of elements in the transpose
matrix.

The algorithm indicates that we sh
in row O of the transpose matrix, find all the elementsincolunmda st or e t

oul d
hem i

S5 D
—h
—_ -

Implementation of Transpose of Sparse Matrix

template <class T>

SparseMatrix SparseMatrix<T>::transpose(SparseMatrix A)

{
t[0].row=A.t[0].row;
t[0].col=A.t[0].cal,
t[0].value=A.t[0].value;

n=t[0].value;
k=1;
if(n>0)
{
for(i=0; i<A.t[0].col; i++)
for(j=0; j<=n; j++)

{
t[K].row=A.t[j].col;
t[k].col=A.t[j].row;
t[k].value=A.t[j].vlaue;
k++;

}

}

return *this;

St. Ann’'s College of Engineering & Techndbl ogy

Analysis of transpose Determiningthe algorithm computing time of this algorithm is easy
since the nested for loops are the decisive fadttar.can see that the outer for loop is iterated
A.t[0].col times(no. of columns in the original matrix). One iteration of the inner fop lo
requires A.t[0].value (no. of nerero elements in the original matrix). Therefore, the total time
for the nested for loops is columns * elements. Hence, the asymptotic time complexity is
O(columns*elementdyluch better algorithntan be createlly usinga little storage, in which

we can transpose matrix represented as a sequence of triples in O(columns + elements) time.

5.3 Matrix multiplication

Definition:

GivenA andB whereA is m? n andB is nd p, the product matri0 has dimensiom? p. Its <, j>
element is

n-1
dij =a 31ij
k=0
forOCi<mand0¢j <p.

Example:

100] (111
100 (000
100 (00O

Figure 2.5: Multiplication of two sparse matrices
Sparse Matrix Multiplication
Def|n|t|0n [D] m*p:[A] m*n* [B]n*p
Procedure: Fix a row of A and find all elements in colyrafB for j=0, 1,é , p-1.
Alternative 1.
Scan all oB to find all elements i
Alternative 2.

111
111
111

A Compute the transpose Bf (Put all column elements consecutively)
A Once we have located the elements of raf A and columnj of B we just do a merge
operation similar to that used in the polynomial addition

General case:
dij=aio* boj+ai*by+ € Bin-1)* b1y
Array A'is grouped by i, and after transpose, array B is also grouped by |

44
a a,. d b,
b a,. e b,,
C a,. f b,

g b,

(@8]

The multiply operation generate entries:
a*d, a*e, a*f, a*g, b*d , b*e, b*f, b*g, c*d, c*e, c*f, c*g

The below progransan obtain the product matrixwhich multiplies matriceg andB.

St. Ann’'s College of Engineering & Technd’l ogy

St. Ann’'s College of Engineering & Techndd8l ogy

REPRESENTATION OF ARRAYS

Multidimensional arrays are usually implemented by storing the elements in a one-
dimensional array. In this section, we develop a representation in which an arbitrary ar-
ray element, say A [i,][i;],...,[i,], gets mapped onto a position in a one-dimensional C++
array so that it can be retrieved efficiently . This is necessary since programs using ar-
rays may, in general, use array elements in a random order. In addition to being able to
retrieve array elements easily, it is also necessary to be able to determine the amount of
memory space to be reserved for a particular array. Assuming that each array element
requires only one word of memory, the number of words needed is the number of ele-
ments in the array. If an array. is declared A[p,..q,][P2--42), * * *,[Pn - G,), Where
Pi - q; is the range of index values in dimension i, then it is easy to see that the number of
elements is

[M@-pi+ 1)

i=l

One of the common ways to represent an array is in row major order (see Exercise
4 at the end of this section for column major order). If we have the declaration

A[4.5](2.4](1..2](3.4)

then we have a total of 2*3*2+2 = 24 elements. Using row major order, these elements
will be stored as

A[4][2][1][3], A[4][2][1](4), A[4][2](2](3], A[4][2](2](4]
and continuing

A[4][3][1][3], A[41[3][1][4], A[4][3](2](3], A[4][3][2](4]
for three more sets of four until we get

A[S][4)(1](3], A[S)[41[1](4), A[S)[4](2](3], A[5)(4)(2])[4]

We see that the index at the right moves the fastest. In fact, if we view the indices as
nuinbers, we see that they are, in some sense, increasing:

4213, 4214, ---, 5423, 5424

A synonym for row major order is lexicographic order.
The problem is how to translate from the name A [i,][i], ..., [i,] to the correct lo-
cation in the one-dimensional array. Suppose A[4]{2][1][3] is stored at position 0. Then

A[4)[2][1](4] will be at position 1 and A[S5][4][2][4] at position 23. These two addresses
are easy to guess. In general, we can derive a formula for the address of any element.
This formula makes use of only the starting address of the array plus the declared dimen-
sions.

To simplify the discussion we shall assume that indices in dimension / run from 0
to u; — 1 (that is, p; = 0 and ¢; = w; — 1). The general case when p; can be any integer is
discussed in the exercises. Before obtaining a formula for the case of an n-dimensional
array, let us look at the row major representation of one-, two-, and three-dimensional ar-
rays. To begin with, if A is declared A [1,], then assuming one word per-element, it may
be represented in sequential memory as in Figure 2.5. If o is the address of A[0), then
the address of an arbitrary element A [i] is just o + i.

array element: A[0] A[l) A[2) -+ Al) - Aluy-l)
address: (v a+l o+2 a+i - v u+u, -1

Figure 2.5: Sequential representation of A (u,]

St. Ann’'s College of Engineering & Techntd ogy

The two-dimensional array Alu,][u;] may be interpreted as u; rows,
rowg, row,, * -, row, ., each row consisting of u, elements. In a row major represen-
tation, these rows would be represented in memory as in Figure 2.6.

Again, if o is the address of A[0][0], then the address of A[i][0] is & + i * u;, as
there are i rows, each of size u,, preceding the first element in the ith row. Knowing the
address of A [i]{0], we can say that tne address of A [i][/] is then simply & + i * uy + j.

Figure 2.7 shows the representation of the three-dimensional array A [u][u;][u;].
This array is interpreted as u, two-dimensional arrays of dimension u; X u3. To locate
A[i][j1[k], we first obtain & + iu,u 4 as the address for A [i][0][0] since there are i two-
dimensional arrays of size u; X u3 preceding this clement. From this and the formula for
addressing a two-dimensional array, we obtain O + iujuy + juy + k as the address of
AL, |

Generalizing on the preceding discussion, the addressing formula for any element
Ali,)is), - --.[i,) in an n-dimensional array declared as A [u,][u;], - - . [u,] may be
easily obtained. If o is the address for A[0] [0] - - -, [O] then & + i uaus - - u, is the
address for A[i;][0), --+,[0). The address for A[i,][i;][0] ---,[0] is then
O+ i lalhy """ Uy + iUy """ Uy

Repeating in this way, the address for A [i] [i2]), - -, [i,] s

C

(=}

10 coll .- coluz-l-
X

row 0
row |
row 2

K XXX

X

X - X
X s X
X X

row u ;-1

(a)

Uz i iy)
lements ' elements '

' row0 row 1 ' rowi row u;—1
| 1

. 1
— [*u, elements ——sn
| 1

®)

Figure 2.6: Sequential representation of A [u,][u;]
O+ i Ugldy """ Uy
+igUaly * " Uy
+ijUgls """ U,

+i,._|u,.
+ iy
n
- a; = I1 v 1sj<n
=a+ Y ijaywhere { 't 0
j-l I a.-l

Note that a; may be computed from a;,,, 1 S j < n, using only one multiplication as
aj = uj,1a;,). Thus, a compiler will-initially take the declared bounds u,, - -, u, and
use them to compute the constants a,, ‘- -, a,.; using n —2 multiplications. The ad-
dress of A[iy], - - -, [i,] can then be found using the formula, requiring n ~ 1 more mul-
tiplications and n additions and n subtractions.

St. Ann’'s College of Engineering & Techn2ll ogy

|
* - —~""/__/ “
E—-u:;‘b‘/

(a) 3-dimensional array A [u |[u;][u;] regarded as u, 2-dimensional arrays

- i uyuy elements -

A’(O.uz.ug) A(Luy,uy) A(iuy,uy) A(uy=luy,uy)

(b) Sequential row major representation of a 3-dimensional array. Each 2-
dimensional array is represented as in Figure 2.6 |

Figure 2.7: Sequential representation of A [u |u;

