UNIT -1
1.The Architecture Business Cycle

For decades, software designers have been taught to build systems based exclusively on the technicq
requirements. Conceptually, the requirements document is tossed over the wall into the dedigrier's cu

and the designer must come forth with a satisfactory design. Requirements beget design, which beget
he naiveté of this model and

system. Of course, modern software development methods recogni
provide all sorts of feedback loops from designearalyst. But they still make the implicit assumption

that design is a product of the system's technical requirements,

Architecturehas emerged as a crucial part of the design p [' khis
Software architecturencompasss the structures of larg ctural view of
a system is abstract, distilling away details of implem ata representation and

concentrating on the behavior and interaction of "blac fancrieecture is

ructure or structures of the system,

The software architecture of a progra computing system is the
which comprise softwarelements nally v& properties of those elements, and the

relationships among them.

Software architecture is i i dsocialinfluences. Its existence in turn affects
the technical, busines [ironments thaegqubkntly influence future architectures. We call

this cycle of influenc

How architectures yield systems that suggest new organizationalltagsabind

requirements.

SACETCSE
Page 1

il

1"

Architecture Process Advice

1.Architecture should be product of a single architect or small group with identified leader

2.Architect should have functional requirements and a prioritized list afyjattibutes

3.Architecture should be wellocumented with at least one static and one dynamic view

4. Architecture should be circulated to stakeholders, who are active in review
5.Architecture should be analyzed (quantitatively and qualitativelpyrédfis too late.
6.System should be developed incrementally from an initial skeleton that includes major
communication paths

7.Architecture should result in a small number of specific resource contentionareas

"Good" Architecture Rules

1.Use infemation hiding to hide computing. infrastructure
2.Each module should protect itssSecrets withha good interface

3.Use wellknown architecture tactics to achieve quality attributes

4.Minimize and isolate dependence on a particular version of a comnpeodact or tool.
5.Separate producer modules from consumersmodules.

6.For parallelprocessing, use wetlefined,processes or tasks.

7.Assignment of tasks arprocesses to processors should be easily changeable (even at runtime)

8.Use a small number aihgple interaction patterns

What Is Software Architecture?

Note:Linda Northrgp'is a program director at Carnegie Mellon University's Software

Engineering Institute.

If a project has not achieved a system architecture, including its rationale, thetpsbjguld not
proceed to fullscale system development. Specifying the architecture as a deliverable enables its

use throughout the development and maintenance process.

SACET-CSE Page 2

In Chapter 1, we explained that architecture plays a pivd&lrmr@llowing an organization to meet its
business goals. Architecture commands a price (the cost of its careful development), but it pays for itself
handsomely by enabling the organization to achieve its system goals and expand its software
capabilities Architecture is an asset that holds tangible value to the developing organization beyond the

project for which it was created.

In this chapter we will focus on architecture strictly from a software engineering point of view. That is,

we will explore thevalue that a software architecture brings to a development project in addition to the

value returned to the enterprise in the ways described in Chapter 1.
What Software Architecture Is and What It Isn't

Figure 2.1, taken from a system description fouaderwater ac , purports to describe
that system's "tofevel architecture" and is precisely the kind i layed to help

explain an architecture. Exactly what can we tell from i

Figure 2.1. Typical, but uninformativpresentation of a software

Noise Model!
{MODN)

All of the elements apparently have some sort of relationship with each other, since the diagram is

fully connected.

Is thisarchitectur® Assuming (as many definitions do) that @eatture is a set of components (of
which we have four) and connections among them (also present), this

diagram seems to fill the bill. However, even if we accept the most primitive definition, what cex we

tell from the diagram?

What is the nature of the elemen®®at is the significance of their separation? Do th&yon

separate processors? Do they run at separate times? Do the elements consist of processes, programs

or both? Do they represent ways in which the project laldbbe divided, or do they convey a sense
of runtime separation? Are they objects, tasks, functions, processes, distributed programs, or
something else?

What are the responsibilities of the elemem#fat is it they do? Wh their functiomthe

sydem?

What is the significance of the connectiobsf’the connectio

communicate with each other, control each other, s

What is the significance of the lay8 is CP on a sepamtevel? Does it call thether three

to call i oes it contain the other three in an
implementation unit sense?, no room to put all four elements on the same row in

the diagram?

We mustraise hese qu unless we know precisely what the elements are and how they
cooperate to accompli m, diagrams such as these are not much help and

should be regz

relationships a

[This is a slight change from the first edition. There the primary building blocks weré calle
"components,” a term that has since become closely associated with the corbpsedrgoftware
engineering movement, taking on a decidedly runtime flavor. "Element" was chosen here to convey
something more general.

SACETCSE Page 4

"Externally visible" properties are those assumptions other elements can make of an element, such as
its provided services, performance characteristics, fault handling, shared resource usage, and so on.

Let's look at some of the implications of this definition in matad.

First, architecture defines software element$e architecture embodies information about how the
elements relate to each other. This means that it specifaaltgcertain information about elements that

does not pertain to their interactionhdls, an architecture is foremost albstractionof a system that
suppresses details of elements that do not affect how they use, are used by, relate to, or interact with othe
er iy oheaterfaces that

partition details about an element into public and private parts. Archit [ncerned with the public

elements. In nearly all modern systems, elements interact with eac

side of this division; private details?those having to do sol
architectural.

Secondthe definition makes clear thaystems can and comprise more t

no one structure can irrefutably claim to the architect

Foexample, all rivial projects are

partitioned into implementation units; these units arerys ifi ibilities and are frequently

kind of element implementation unit and processes), more than one kind of interaction among
elements (e.g., subdivision and

SACET-CSE Page 5

synchronization), and even more than one context (e.g., afgweht time versus runtime). By
intention, the definition does not specify what the architectural elements and relationships are. Is a
software element an object? A process? A library? A database? A commercial product? It can be any of
these things and mer

Third, the definition implies thagévery computing system with software has a softwachitecture
because every system can be shown to comprise elements and the ratatogsthem. In the most
trivial case, a system is itself a single element?enésting and probably nonuseful but an architecture

nevertheless. Even though every system has an architecture, it do ot necessarily follow that the

documentation has vanished (or was never produced), the been lost (or was never
delivered), and all we have is the executing binary code. Thi [e between the
architecture of a system and the representation of th itecture can

exist independently of its description or specificatio

Fourth,the behaior of each element is part of the architectur behavior can be observed

or discerned from the point of view ement. Such behavior is what allows elements to
interact with each other, which is cl l}tecﬁh‘s is another reason that the kmdc

line drawings that are passed [s are not architectures at all. They are shapty box

line drawings?or, to be more as cues to provide more information that explains
what theelements sho [the names of the boxes (database, graphical user
interface, executive, e i ine the functionality and behavior of the corresponding

elements. This_mental

in all circumstances; however, to the extent that an element's

element must be written to interact with it or influences the

intermediate stages. Each stage represents the outcome of arshitectural decisions, the binding of
architectural choices. Some of these intermediate stages are very useful in their own right. Before

discussing architectural structures, we define three of them.

1. An architectural pattern is a description of mlent and relation types together with a set of
constraints on how they may be us@dpattern can be thought of as a setcohstraints on an
architecture?on the element types and their patterinseofiction?and these constraints define a set or
family of architectures that satisfy them. For example, clgamver is a c%mon architectural pattern.
Client and server are two element types, and their coordination is.described in terms of the protocol
that the server uses to communicate with each of itstslie/se (ﬂw te;rdient—
serverimplies only that multiple clients exist; the clients thamselves are{Jt idenﬁﬁeldthere is
no discussion of what functionality, other than impIe%ntation of the Erotoc%mgbeen assigned to
any of the client®r to the server. Countless archite&tures are of the dh&f@r pattern under this
(informal) definition, but they are different from e@h other. An architﬁtural pattern is not an

architecture, then, but it still conveys a useful image of the systamises useful constraints on

the architecture and, in turn, on the system.

One of the most useful aspects of patterns is that they exhibit known quality attributes. This is why
the architect chooses a particuMern and gone at random. Somes patieesent known
solutions to performance wﬁ:ms, oth¢£ Ie&l themselves well teduginity systems, still others

have been used sucﬁfully in hafailability systems. Choosing an architectural pattern is often

the architect's first major desig :

VN
The termarchitectural stylehas also been widely used to describe the same concept.

P AN .

2. A reference model is a division of functionality together with data flow between the. gieces
W -— -— a

reference model is a standard decomposition of a known probltenpartsthat cooperatively
AR Ww W T
solve the problem. Arisin%from experience, reference models are a characteristic of mature
- \ ¥ 4 _
domains. Can you&ame the standard parts of a compiler or a database management system? Can
.
you explain in broad terms how the partsrkvtmgether to accomplish their collective purpose? If
A 4

S0, it is because/you have been taught a reference model of these applications.

3. A reference architecture is a reference model mapped onto software elements (that cooperatively
implement the function® defined in the reference model) and the data flows between them
Whereas a reference model divides the functionality, a reference

%

architecture is the mapping of that functionality onto a system decomposition. The mapping may
be, but by no means necessarily is, one to one. A software element may implement part of a

function or several functions.

Reference models, architectural patterns, and reference architectures are not architectures; they are usef
concepts that capturelements of an architure. Each is the outcome of early design decisions. The

relationship among these design elements is shown in Figure 2.2.

Figure 2.2. The relationships of reference models, architectural pattemms, reference architectures, andg
softwarearchitectures. (The arrows indicate that subsequent conceptsgontain more design elements.)

[

Reference
Model

Reference Software
Architecture Architecture

Architectural
Pattern

People often make analogies to other uses of the aurditecture about which they have some
intuition. They commonly associate af€hitecture with ptalsstructure (buildings, streets, hardware)
and physical arrangement. A building architect must design a building that provides accessibility,
aesthetics, light, maintainability, and so on. A software architect must design a system that provides

concurrecy, portability, madifiability, usability, secUgity, and the like, and that reflects consideration of
the tradeoffs among these néeds.

Analogies between buildings and softwareysystems should not be taken too far, as they break down fairly

quickly. Rathegthey help us understanghthat the viewer's perspective is important and that structure can

have different meanings depen(#ing 0N the motivation for examining it. A precise definition of software
architectljre is not nearly as‘important as what investigétsmgoncept allows us to do.
Architeetural Structures’and Views

We|will be usjng therelated termsgructureandviewwhen discussing architecture representation. A

is a representation of a coherent set of architectural elements, as writtenrbgcibgt system
stakeholders. It consists of a representation of a set of elements and the relations among them. A
structure is the set of elements itself, as they exist in software or hardware. For example, a module
structure is the set of the system's niled and their organization.

SACET-CSE Page 8

A module view is the representation of that structure, as documented by and used by some system
stakeholders. These terms are often used interchangeably, but we will adhere to these definitions.

Architectural structures can by and large be divided into three groups, depending on the broad nature

of the elements they show.

Module structuresHere the elements are modules, which are units of implementaiotules
represent a codeased way of considegnthe system. They are assigned areas of functional
responsibility. There is less emphasis on how the resulting software manifests itself at runtime.

Module structures allow us to answer questions such as What is rimary functional responsibility

assigned to each module? What other software elements is a m ed to use? What other
software does it actually use? What modules are relat ules by generalization or

specialization (i.e., inheritance) relationships?

executing components and how do t r shared data stores? Which parts
of the system are replicated? Ho s through the system? What parts of the system

chenigexecutes?

Allocation structuresAllo
and the elements i ironments in which the software is created and

executed. They an i hat parcdses each software element execute on? In

what files is each [evelopment, testing, and system building? What is the

interactions (connectors)?

How is the system to relate to nonsoftware structures in its environment (i.e., CPUs, file systems,
networks, development teams, etc.)?

%

SOFTWARE STRUCTURES

Some of the most common and useful software structures are shown in Figlitee2e3are described

in the following sections.

Figure 23. Common software architecture structures

Ve Y
Module Component- Allocation
and-Connector
Decomposition Class Client- |Process Shared
Server Data Deployment
Implementation
Uses Concurrency Work
l Assignment
Layered
& 4

Module

Module-based structures includé the following.

DecompositionThe units arel modules related“to,each other by the "is a sluitenof " relation,
showing how larger 'modules are decomposed into smaller ones recursively until they are small
enough to be easily understood. MedulgS'in this structure represent a common starting point for
design, asghe architect enumerates,what ttie ahsoftware will have to do and assigns each item to

a module for subsequent (more_detailed) design and eventual implementation. Modules often have
associated products (['@m.interface specifications, code, test plans, etc.). The decompositiaa structur
proviJes a largegpart of the"system's modifiability, by ensuring that likely changes fall within the
purview of at mostia few small modules. It is often used as the basis for the development project's

organization, including the structure of the docuratoh, and its integration and test plans. The

isestructure often have organizatgpecific names. Certain U.S. Department of Defense
standards, for instance, define Computer Software Configuration Items (CSCIs) and Computer
Software Componen{€SCs), which are units of modular decomposition. In Chapter 15, we will see

system function groups and system functions as the units of decomposition.

SACET-CSE Page 10

SACET-CSE Page 11

Uses The units of this important but overlooked structure are also modul€s) crcumstances

where a finer grain is warranted) procedures or resources on the interfaces of modules. The units are
related by theisesrelation. One unit uses another if the correctness of the first requires the presence
of a correct version (as opged to a stub) of the second. The uses structure is used to engineer
systems that can be easily extended to add functionality or from which useful functional subsets can
be easily extracted. The ability to easily subset a working system allows for imtatéme

development, a powerful build discipline that will be discussed further in Chapter 7.

Layered.When the uses relations in this structure are carefully rolled in a particayara

system of layers emerges, in which a layer is a coherent seta ionality. In a strictly
layered structure, layermay only use the services of
layern ? 1. Many variations of this (and a lessening [cur in practice,

however. Layers are often designed as abstract [[plementation

specifics below from the layers above, engendering portability. We will see|layers in the case studies

of Chapters 3, 13 and 15.

Class or generalization The module dipits in this struct led classes. ré&lagon is

"inheritsfrom" or "is-arrinstanceo is view s?rts reasoning about collections of similar
otherClasses inherit from) and parameterized differences

ture allows us to reason abouwuse and the

es or threads that are connected with each other by communication,
or exclusion operations. The relation in thid {@nall componenrand
connector struc iattachment showing how the components and connectors are hooked
ess structure is important in helping to engineer a system's execution performance

and availability.

ConcurrencyThis compoentandconnector structure allows the architect to deterraportunities
for parallelism and the locations where resource contention may occur. The units are components and
the connectors are "logical threads." A logical thread is a sequence of ctomptitat can be
allocated to a separate physical thread later in the

design process. The concurrency structure is used early in design to identify the

requirements for managing the issues associated with concurrent execution.

Shaed datg or repository.This structure comprises components and connectorsréste, store,
and access persistent data. If the system is in fact structured around one or more shared data
repositories, this structure is a good one to illuminate. It show data is produced and consumed

by runtime software elements, and it can be used to ensure good performance and data integrity.

Clientserver.If the system is built as a group of cooperating clie nd servers, thigded

componenandconnectorstructure to illuminate. The component the clients and servers, and
m's work. This is useful

physical ibuteomg _for load

the connectors are protocols and messages they share to
for separation of concerns (supporting modifiability), f

balancing (supporting runtime performance).

Allocation

Allocation structures include the following.

DeploymentThe deployment structureshows how softwar d to havpwaessing and

communication elements. The el ts arewso#t (usually a process from a comporemd

connector view), hardware cessors), and communication pathways. Relations are

"allocatedto," showing on physical the software elements reside, and "migratiés

decision about who does the work has architectural as well as management

ed development projects, the work assignment structure is the means for calling out
units of functional

SACET-CSE Page 12

commonality and assigning therno a single team, rather than having them
implemented by everyone who needs them.
WHICH STRUCTURES TO CHOOSE?

There is no shortage of advice. In 1995, Philippe Kruchten [Kruchten 95] published a very influential
paper in which he described the conceptaofhitecture comprising separate structures and advised
concentrating on four. To validate that the structures were not in conflict with each other and together did
key uss aagexck. This
institutionalized as the conceptug

in fact describe a system meeting its requirements, Kruchten advised usi

so-called "Four Plus One" approach became popular and has now b
basis of the Rational Unified Process. Kruchten's four views foll

Process. This view addresses concurrency and

componenandconnector view.

DevelopmentThis view shows the ogganization of softw. ibrariessubsystems, and

units of development. It is an allo view, ma?q software to the development environment.

Physical.This view maps ot nto processing and communication nodssaéswan

allocation view (which ot view).

Creating an Architectu

are the means by which quality moves from the eye of the

sis. In Chapter 4, we explore different types of quality that may be

security, testabilit sability), we describe how to generate scenarios that can be used to

characterize quality/requirements. These scenarios demonstrate what quality means for a particular

system, giing both the architect and the customer a basis for judging a design.

SACET-CSE Page 13

Quiality Attributes

Architecture and Quality Attributes

Achieving quality attributes must be considered throughout design, implementation, and deployment.
No quality attribute is entirely dependent on design, nor is it entirely dependent on implementation or
deployment. Satisfactory results are a matter of getting the big picture (architecture) as well as the

details (implementation) correct. For example:

Usability involves both architectural and nonarchitectural aspe he nonarchitectural aspects
include making the user interface clear and easy to use. e a radio button or a
check box? What screen layout is most intuitive? What
details matter tremendously to the end user and j ili t architectural
because they belong to the details of design. Whe er with the ability to

cancel operations, to undo opiwas, or to reuse data hitectural, however.

how much comm

functionality has b

The

e realization of many qualities of interest in a system, and these

ignedand can be evaluated at the architectural level.

quality, but thisfoundation will be to no avail if attention is not paid to the details.

Let's begin outour of quality attributes. We will examine the following three classes:

SACET-CSE Page 14

1. Qualities of the system. We will focus on availability, modifiability, performance, security,

testability, and usability.
2. Business qualities (such as timemarket) that are affected by the architecture.

3. Qualities, such as conceptual integrity, that are about the architecture itself although they

indirectly affect other qualities, such as modifiability.

System Quiality Attributes

System quality attributesalre been of interest to the software commu at least since the 1970s. There

are a variety of published taxonomies and definitions, and e their own research and

practitioner communities. From an architect's perspective, previous
discussions of system quality attribut®;:
The definitions provided for an attribute are not op s to say that a system
will be modifiable. Every system is modifiable wit t of changes and no

quality ?ticular aspect belongs to. Is a system failure an

, or an‘aspect of usability?rédl ditribute communities

Stimulus The stimulus is a condition that needs to be considehed it arrives at aystem.

SACET-CSE Page 15

Environment.The stimulus occurs within certain conditions. The system may be wmvenoad

condition or may be running when the stimulus occurs, or some other condition may be true.
Artifact. Some aiifact is stimulated. This may be the whole system or some pieces of it.
Responselhe response is the activity undertaken after the arrival of the stimulus.

Response measur&/hen the response occurs, it should be measurable in some faghiwat the

requirement can be tested.

Quiality attribute parts

Response
Measure

Source
of Stimulus

enerating a large number of generic;isgsgendent,
potentially but not necessarily relevant to the system you

SACETCSE Page 16

AVAILABILITY
MODIFIABILITY
PERFORMANCE

SECURITY

TESTABILITY

USABILITY

Achieving Qualities

(] Introducing Tactics
1 Availability Tactics
1 Modifiability Tactics
L1 Performance Tactics
L1 Security Tactics

] Testability Tactics

[Usability Tactics '
1 Relationship of Tactics to Architectural Pat

INTRODUCTION TAC

tactics he g what architects do in practice.

SACET-CSE Page 17

http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.1+Introducing+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.2+Availability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.3+Modifiability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.4+Performance+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.5+Security+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.6+Testability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.7+Usability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.8+Relationship+of+Tactics+to+Architectural+Patterns/

Tactics are intended to control responses to stimuli.

Tactics
to Control

Response

Each tactic is a design option for the architect. For example, one of the tactics introduces redundancy to
0 inciabemligy, but not

increase the availability of a system. This is one option the architect
the only one. Usually achieving high availability through redundancy lies ayconcomitant need for
ed if th ginal fails). We see two

synchronization (to ensure that the redundant copy can b

immediate ramifications of this exanapl
1.Tactics can refine other tactics.

2.Patterns package tactics.

Availability Tactics

Goal of availability tactics

Many of the tac i lable within standard execution environments such as operating
and database management systems. It is still important to understand the
effects '©f using a particular one can be considered during design and evaluation.
All app intaining availability involve some type ofuneldncy, some type of health
monitoring to detect ilure, and some type of recovery when a failure is detected.

mmary of availability tactics

SACET-CSE Page 18

Modifiability Tactics ‘

We organize the tactics for mdidibility in sets according to their goals. One set has as its goal reducing
the number of modules that are directly affected by a change. We call this set "localize modifications." A
second set has as its goal limiting modifications to the localized msmdWie use this set of tactics to
"prevent the ripple effect.” Implicit in this distinction is that there are modules directly affected (those
whose responsibilities are adjusted to accomplish the change) and modules indirectly affected by a
change (thosevhose responsibilities remain unchanged but whose implementation must be changed to
accommodate the directly affected modules). A third set of tactics has as its goal controlling deployment
time and cost. We call this set "defer binding time."

Goal of modfiability tactic

R

SACET-CSE Page 19

