

 UNIT - 1
1.The Architecture Business Cycle

For decades, software designers have been taught to build systems based exclusively on the technical

requirements. Conceptually, the requirements document is tossed over the wall into the designer's cubicle,

and the designer must come forth with a satisfactory design. Requirements beget design, which begets

system. Of course, modern software development methods recognize the naïveté of this model and

provide all sorts of feedback loops from designer to analyst. But they still make the implicit assumption

that design is a product of the system's technical requirements, period.

Architecture has emerged as a crucial part of the design process and is the subject of this book.

Software architecture encompasses the structures of large software systems. The architectural view of

a system is abstract, distilling away details of implementation, algorithm, and data representation and

concentrating on the behavior and interaction of "black box" elements. A software architecture is

developed as the first step toward designing a system that has a collection of desired properties.

The software architecture of a program or computing system is the structure or structures of the system,

which comprise software elements, the externally visible properties of those elements, and the

relationships among them.

Software architecture is a result of technical, business, and social influences. Its existence in turn affects

the technical, business, and social environments that subsequently influence future architectures. We call

this cycle of influences, from the environment to the architecture and back to the environment,

theArchitecture Business Cycle (ABC).

This chapter introduces the ABC . The major parts of the book tour the cycle by examining the

following:

· How organizational goals influence requirements and development strategy.

· How requirements lead to an architecture.

· How architectures are analyzed.

· How architectures yield systems that suggest new organizational capabilities and

requirements.

SACET-CSE
 Page 1

Architecture Process Advice

1.Architecture should be product of a single architect or small group with identified leader

2.Architect should have functional requirements and a prioritized list of quality attributes

3.Architecture should be well-documented with at least one static and one dynamic view

4.Architecture should be circulated to stakeholders, who are active in review

5.Architecture should be analyzed (quantitatively and qualitatively) before it is too late.

6.System should be developed incrementally from an initial skeleton that includes major

communication paths

7.Architecture should result in a small number of specific resource contention areas

"Good" Architecture Rules

1.Use information hiding to hide computing infrastructure

2.Each module should protect its secrets with a good interface

3.Use well-known architecture tactics to achieve quality attributes

4.Minimize and isolate dependence on a particular version of a commercial product or tool.

5.Separate producer modules from consumer modules.

6.For parallel-processing, use well-defined processes or tasks.

7.Assignment of tasks or processes to processors should be easily changeable (even at runtime)

8.Use a small number of simple interaction patterns

What Is Software Architecture?

Note: Linda Northrop is a program director at Carnegie Mellon University's Software

Engineering Institute.

If a project has not achieved a system architecture, including its rationale, the project should not

proceed to full-scale system development. Specifying the architecture as a deliverable enables its

use throughout the development and maintenance process.

SACET-CSE Page 2

In Chapter 1, we explained that architecture plays a pivotal role in allowing an organization to meet its

business goals. Architecture commands a price (the cost of its careful development), but it pays for itself

handsomely by enabling the organization to achieve its system goals and expand its software

capabilities. Architecture is an asset that holds tangible value to the developing organization beyond the

project for which it was created.

In this chapter we will focus on architecture strictly from a software engineering point of view. That is,

we will explore the value that a software architecture brings to a development project in addition to the

value returned to the enterprise in the ways described in Chapter 1.

What Software Architecture Is and What It Isn't

Figure 2.1, taken from a system description for an underwater acoustic simulation, purports to describe

that system's "top-level architecture" and is precisely the kind of diagram most often displayed to help

explain an architecture. Exactly what can we tell from it?

Figure 2.1. Typical, but uninformative, presentation of a software architecture

· The system consists of four elements.

· Three of the elements? Prop Loss Model (MODP), Reverb Model (MODR), and Noise Model

(MODN)? might have more in common with each other than with the fourth? Control Process

(CP)? because they are positioned next to each other.

· All of the elements apparently have some sort of relationship with each other, since the diagram is

fully connected.

Is this architecture? Assuming (as many definitions do) that architecture is a set of components (of

which we have four) and connections among them (also present), this

SACET-CSE Page 3

diagram seems to fill the bill. However, even if we accept the most primitive definition, what can we not

tell from the diagram?

· What is the nature of the elements? What is the significance of their separation? Do they run on

separate processors? Do they run at separate times? Do the elements consist of processes, programs,

or both? Do they represent ways in which the project labor will be divided, or do they convey a sense

of runtime separation? Are they objects, tasks, functions, processes, distributed programs, or

something else?

· What are the responsibilities of the elements? What is it they do? What is their function in the

system?

· What is the significance of the connections? Do the connections mean that the elements

communicate with each other, control each other, send data to each other, use each other, invoke

each other, synchronize with each other, share some information-hiding secret with each other, or

some combination of these or other relations? What are the mechanisms for the communication?

What information flows across the mechanisms, whatever they may be?

· What is the significance of the layout? Why is CP on a separate level? Does it call the other three

elements, and are the others not allowed to call it? Does it contain the other three in an

implementation unit sense? Or is there simply no room to put all four elements on the same row in

the diagram?

We must raise these questions because unless we know precisely what the elements are and how they

cooperate to accomplish the purpose of the system, diagrams such as these are not much help and

should be regarded skeptically.

This diagram does not show a software architecture, at least not in any useful way. The most

charitable thing we can say about such diagrams is that they represent a start. We now define what

does constitute a software architecture:

The software architecture of a program or computing system is the structure or structures of the system,

which comprise software elements, the externally visible properties of those elements, and the

relationships among them.[1]

[1] This is a slight change from the first edition. There the primary building blocks were called

"components," a term that has since become closely associated with the component-based software

engineering movement, taking on a decidedly runtime flavor. "Element" was chosen here to convey

something more general.

SACET-CSE Page 4

"Externally visible" properties are those assumptions other elements can make of an element, such as

its provided services, performance characteristics, fault handling, shared resource usage, and so on.

Let's look at some of the implications of this definition in more detail.

First, architecture defines software elements. The architecture embodies information about how the

elements relate to each other. This means that it specifically omits certain information about elements that

does not pertain to their interaction. Thus, an architecture is foremost an abstraction of a system that

suppresses details of elements that do not affect how they use, are used by, relate to, or interact with other

elements. In nearly all modern systems, elements interact with each other by means of interfaces that

partition details about an element into public and private parts. Architecture is concerned with the public

side of this division; private details?those having to do solely with internal implementation?are not

architectural.

Second, the definition makes clear that systems can and do comprise more than one structure and that

no one structure can irrefutably claim to be the architecture. For example, all nontrivial projects are

partitioned into implementation units; these units are given specific responsibilities and are frequently

the basis of work assignments for programming teams. This type of element comprises programs and

data that software in other implementation units can call or access, and programs and data that are

private. In large projects, these elements are almost certainly subdivided for assignment to subteams.

This is one kind of structure often used to describe a system. It is very static in that it focuses on the way

the system's functionality is divided up and assigned to implementation teams.

Other structures are much more focused on the way the elements interact with each other at runtime to

carry out the system's function. Suppose the system is to be built as a set of parallel processes. The

processes that will exist at runtime, the programs in the various implementation units described

previously that are strung together sequentially to form each process, and the synchronization relations

among the processes form another kind of structure often used to describe a system.

Are any of these structures alone the architecture? No, although they all convey architectural

information. The architecture consists of these structures as well as many others. This example

shows that since architecture can comprise more than one kind of structure, there is more than one

kind of element (e.g., implementation unit and processes), more than one kind of interaction among

elements (e.g., subdivision and

SACET-CSE Page 5

synchronization), and even more than one context (e.g., development time versus runtime). By

intention, the definition does not specify what the architectural elements and relationships are. Is a

software element an object? A process? A library? A database? A commercial product? It can be any of

these things and more.

Third, the definition implies that every computing system with software has a software architecture

because every system can be shown to comprise elements and the relations among them. In the most

trivial case, a system is itself a single element?uninteresting and probably nonuseful but an architecture

nevertheless. Even though every system has an architecture, it does not necessarily follow that the

architecture is known to anyone. Perhaps all of the people who designed the system are long gone, the

documentation has vanished (or was never produced), the source code has been lost (or was never

delivered), and all we have is the executing binary code. This reveals the difference between the

architecture of a system and the representation of that architecture. Unfortunately, an architecture can

exist independently of its description or specification, which raises the importance of architecture

documentation (described in Chapter 9) andarchitecture reconstruction (discussed in Chapter 10).

Fourth, the behavior of each element is part of the architecture insofar as that behavior can be observed

or discerned from the point of view of another element. Such behavior is what allows elements to

interact with each other, which is clearly part of the architecture. This is another reason that the box-and-

line drawings that are passed off as architectures are not architectures at all. They are simply box-and-

line drawings?or, to be more charitable, they serve as cues to provide more information that explains

what the elements shown actually do. When looking at the names of the boxes (database, graphical user

interface, executive, etc.), a reader may well imagine the functionality and behavior of the corresponding

elements. This mental image approaches an architecture, but it springs from the observer's mind and

relies on information that is not present. We do not mean that the exact behavior and performance of

every element must be documented in all circumstances; however, to the extent that an element's

behavior influences how another element must be written to interact with it or influences the

acceptability of the system as a whole, this behavior is part of the software architecture.

Architectural Patterns, Reference Models, and Reference Architectures

Between box-and-line sketches that are the barest of starting points and full-fledged architectures,

with all of the appropriate information about a system filled in, lie a host of

SACET-CSE Page 6

intermediate stages. Each stage represents the outcome of a set of architectural decisions, the binding of

architectural choices. Some of these intermediate stages are very useful in their own right. Before

discussing architectural structures, we define three of them.

1. An architectural pattern is a description of element and relation types together with a set of

constraints on how they may be used. A pattern can be thought of as a set of constraints on an

architecture?on the element types and their patterns of interaction?and these constraints define a set or

family of architectures that satisfy them. For example, client-server is a common architectural pattern.

Client and server are two element types, and their coordination is described in terms of the protocol

that the server uses to communicate with each of its clients. Use of the term client-

server implies only that multiple clients exist; the clients themselves are not identified, and there is

no discussion of what functionality, other than implementation of the protocols, has been assigned to

any of the clients or to the server. Countless architectures are of the client-server pattern under this

(informal) definition, but they are different from each other. An architectural pattern is not an

architecture, then, but it still conveys a useful image of the system?it imposes useful constraints on

the architecture and, in turn, on the system.

One of the most useful aspects of patterns is that they exhibit known quality attributes. This is why

the architect chooses a particular pattern and not one at random. Some patterns represent known

solutions to performance problems, others lend themselves well to high-security systems, still others

have been used successfully in high-availability systems. Choosing an architectural pattern is often

the architect's first major design choice.

The term architectural style has also been widely used to describe the same concept.

2. A reference model is a division of functionality together with data flow between the pieces. A

reference model is a standard decomposition of a known problem into parts that cooperatively

solve the problem. Arising from experience, reference models are a characteristic of mature

domains. Can you name the standard parts of a compiler or a database management system? Can

you explain in broad terms how the parts work together to accomplish their collective purpose? If

so, it is because you have been taught a reference model of these applications.

3. A reference architecture is a reference model mapped onto software elements (that cooperatively

implement the functionality defined in the reference model) and the data flows between them.

Whereas a reference model divides the functionality, a reference

SACET-CSE Page 7

architecture is the mapping of that functionality onto a system decomposition. The mapping may

be, but by no means necessarily is, one to one. A software element may implement part of a

function or several functions.

Reference models, architectural patterns, and reference architectures are not architectures; they are useful

concepts that capture elements of an architure. Each is the outcome of early design decisions. The

relationship among these design elements is shown in Figure 2.2.

Figure 2.2. The relationships of reference models, architectural patterns, reference architectures, and

software architectures. (The arrows indicate that subsequent concepts contain more design elements.)

People often make analogies to other uses of the word architecture, about which they have some

intuition. They commonly associate architecture with physical structure (buildings, streets, hardware)

and physical arrangement. A building architect must design a building that provides accessibility,

aesthetics, light, maintainability, and so on. A software architect must design a system that provides

concurrency, portability, modifiability, usability, security, and the like, and that reflects consideration of

the tradeoffs among these needs.

Analogies between buildings and software systems should not be taken too far, as they break down fairly

quickly. Rather, they help us understand that the viewer's perspective is important and that structure can

have different meanings depending on the motivation for examining it. A precise definition of software

architecture is not nearly as important as what investigating the concept allows us to do.

Architectural Structures and Views

We will be using the related terms structure and view when discussing architecture representation. A

view is a representation of a coherent set of architectural elements, as written by and read by system

stakeholders. It consists of a representation of a set of elements and the relations among them. A

structure is the set of elements itself, as they exist in software or hardware. For example, a module

structure is the set of the system's modules and their organization.

SACET-CSE Page 8

A module view is the representation of that structure, as documented by and used by some system

stakeholders. These terms are often used interchangeably, but we will adhere to these definitions.

Architectural structures can by and large be divided into three groups, depending on the broad nature

of the elements they show.

· Module structures. Here the elements are modules, which are units of implementation. Modules

represent a code-based way of considering the system. They are assigned areas of functional

responsibility. There is less emphasis on how the resulting software manifests itself at runtime.

Module structures allow us to answer questions such as What is the primary functional responsibility

assigned to each module? What other software elements is a module allowed to use? What other

software does it actually use? What modules are related to other modules by generalization or

specialization (i.e., inheritance) relationships?

· Component-and-connector structures. Here the elements are runtime components (which are the

principal units of computation) and connectors (which are the communication vehicles among

components). Component-and-connector structures help answer questions such as What are the major

executing components and how do they interact? What are the major shared data stores? Which parts

of the system are replicated? How does data progress through the system? What parts of the system

can run in parallel? How can the system's structure change as it executes?

· Allocation structures. Allocation structures show the relationship between the software elements

and the elements in one or more external environments in which the software is created and

executed. They answer questions such as What processor does each software element execute on? In

what files is each element stored during development, testing, and system building? What is the

assignment of software elements to development teams?

These three structures correspond to the three broad types of decision that architectural design

involves:

· How is the system to be structured as a set of code units (modules)?

· How is the system to be structured as a set of elements that have runtime behavior

(components) and interactions (connectors)?

· How is the system to relate to nonsoftware structures in its environment (i.e., CPUs, file systems,

networks, development teams, etc.)?

SACET-CSE Page 9

SOFTWARE STRUCTURES

Some of the most common and useful software structures are shown in Figure 2.3. These are described

in the following sections.

Figure 2-3. Common software architecture structures

Module

Module-based structures include the following.

· Decomposition. The units are modules related to each other by the "is a submodule of " relation,

showing how larger modules are decomposed into smaller ones recursively until they are small

enough to be easily understood. Modules in this structure represent a common starting point for

design, as the architect enumerates what the units of software will have to do and assigns each item to

a module for subsequent (more detailed) design and eventual implementation. Modules often have

associated products (i.e., interface specifications, code, test plans, etc.). The decomposition structure

provides a large part of the system's modifiability, by ensuring that likely changes fall within the

purview of at most a few small modules. It is often used as the basis for the development project's

organization, including the structure of the documentation, and its integration and test plans. The

units in this structure often have organization-specific names. Certain U.S. Department of Defense

standards, for instance, define Computer Software Configuration Items (CSCIs) and Computer

Software Components (CSCs), which are units of modular decomposition. In Chapter 15, we will see

system function groups and system functions as the units of decomposition.

SACET-CSE Page 10

· Uses. The units of this important but overlooked structure are also modules, or (in circumstances

where a finer grain is warranted) procedures or resources on the interfaces of modules. The units are

related by the uses relation. One unit uses another if the correctness of the first requires the presence

of a correct version (as opposed to a stub) of the second. The uses structure is used to engineer

systems that can be easily extended to add functionality or from which useful functional subsets can

be easily extracted. The ability to easily subset a working system allows for incremental

development, a powerful build discipline that will be discussed further in Chapter 7.

· Layered. When the uses relations in this structure are carefully controlled in a particular way, a

system of layers emerges, in which a layer is a coherent set of related functionality. In a strictly

layered structure, layer n may only use the services of

layer n ? 1. Many variations of this (and a lessening of this structural restriction) occur in practice,

however. Layers are often designed as abstractions (virtual machines) that hide implementation

specifics below from the layers above, engendering portability. We will see layers in the case studies

of Chapters 3, 13 and 15.

· Class, or generalization. The module units in this structure are called classes. The relation is

"inherits-from" or "is-an-instance-of." This view supports reasoning about collections of similar

behavior or capability (i.e., the classes that other classes inherit from) and parameterized differences

which are captured by subclassing. The class structure allows us to reason about re-use and the

incremental addition of functionality.

Component-and-Connector

These structures include the following.

· Process, or communicating processes. Like all component-and-connector structures, this one is

orthogonal to the module-based structures and deals with the dynamic aspects of a running system.

The units here are processes or threads that are connected with each other by communication,

synchronization, and/or exclusion operations. The relation in this (and in all component-and-

connector structures) is attachment, showing how the components and connectors are hooked

together. The process structure is important in helping to engineer a system's execution performance

and availability.

· Concurrency. This component-and-connector structure allows the architect to determine opportunities

for parallelism and the locations where resource contention may occur. The units are components and

the connectors are "logical threads." A logical thread is a sequence of computation that can be

allocated to a separate physical thread later in the

SACET-CSE Page 11

design process. The concurrency structure is used early in design to identify the

requirements for managing the issues associated with concurrent execution.

· Shared data, or repository. This structure comprises components and connectors that create, store,

and access persistent data. If the system is in fact structured around one or more shared data

repositories, this structure is a good one to illuminate. It shows how data is produced and consumed

by runtime software elements, and it can be used to ensure good performance and data integrity.

· Client-server. If the system is built as a group of cooperating clients and servers, this is a good

component-and-connector structure to illuminate. The components are the clients and servers, and

the connectors are protocols and messages they share to carry out the system's work. This is useful

for separation of concerns (supporting modifiability), for physical distribution, and for load

balancing (supporting runtime performance).

Allocation

Allocation structures include the following.

· Deployment. The deployment structure shows how software is assigned to hardware-processing and

communication elements. The elements are software (usually a process from a component-and-

connector view), hardware entities (processors), and communication pathways. Relations are

"allocated-to," showing on which physical units the software elements reside, and "migrates-to," if

the allocation is dynamic. This view allows an engineer to reason about performance, data integrity,

availability, and security. It is of particular interest in distributed or parallel systems.

· Implementation. This structure shows how software elements (usually modules) are mapped to the

file structure(s) in the system's development, integration, or configuration control environments.

This is critical for the management of development activities and build processes.

· Work assignment. This structure assigns responsibility for implementing and integrating the modules

to the appropriate development teams. Having a work assignment structure as part of the architecture

makes it clear that the decision about who does the work has architectural as well as management

implications. The architect will know the expertise required on each team. Also, on large multi-

sourced distributed development projects, the work assignment structure is the means for calling out

units of functional

SACET-CSE Page 12

commonality and assigning them to a single team, rather than having them

implemented by everyone who needs them.

WHICH STRUCTURES TO CHOOSE?

There is no shortage of advice. In 1995, Philippe Kruchten [Kruchten 95] published a very influential

paper in which he described the concept of architecture comprising separate structures and advised

concentrating on four. To validate that the structures were not in conflict with each other and together did

in fact describe a system meeting its requirements, Kruchten advised using key use cases as a check. This

so-called "Four Plus One" approach became popular and has now been institutionalized as the conceptual

basis of the Rational Unified Process. Kruchten's four views follow:

· Logical. The elements are "key abstractions," which are manifested in the object-oriented

world as objects or object classes. This is a module view.

· Process. This view addresses concurrency and distribution of functionality. It is a

component-and-connector view.

· Development. This view shows the organization of software modules, libraries, subsystems, and

units of development. It is an allocation view, mapping software to the development environment.

· Physical. This view maps other elements onto processing and communication nodes and is also an

allocation view (which others call the deployment view).

Creating an Architecture

Quality is often in the eye of the beholder (to paraphrase Booth Tarkington). What this means for the

architect is that customers may dislike a design because their concept of quality differs from the

architect's. Quality attribute scenarios are the means by which quality moves from the eye of the

beholder to a more objective basis. In Chapter 4, we explore different types of quality that may be

appropriate for an architecture. For six important attributes (availability, modifiability, performance,

security, testability, and usability), we describe how to generate scenarios that can be used to

characterize quality requirements. These scenarios demonstrate what quality means for a particular

system, giving both the architect and the customer a basis for judging a design.

SACET-CSE Page 13

Quality Attributes

Architecture and Quality Attributes

Achieving quality attributes must be considered throughout design, implementation, and deployment.

No quality attribute is entirely dependent on design, nor is it entirely dependent on implementation or

deployment. Satisfactory results are a matter of getting the big picture (architecture) as well as the

details (implementation) correct. For example:

· Usability involves both architectural and nonarchitectural aspects. The nonarchitectural aspects

include making the user interface clear and easy to use. Should you provide a radio button or a

check box? What screen layout is most intuitive? What typeface is most clear? Although these

details matter tremendously to the end user and influence usability, they are not architectural

because they belong to the details of design. Whether a system provides the user with the ability to

cancel operations, to undo operations, or to re-use data previously entered is architectural, however.

These requirements involve the cooperation of multiple elements.

· Modifiability is determined by how functionality is divided (architectural) and by coding

techniques within a module (nonarchitectural). Thus, a system is modifiable if changes involve the

fewest possible number of distinct elements.

· Performance involves both architectural and nonarchitectural dependencies. It depends partially on

how much communication is necessary among components (architectural), partially on what

functionality has been allocated to each component (architectural), partially on how shared resources

are allocated (architectural), partially on the choice of algorithms to implement selected functionality

(nonarchitectural), and partially on how these algorithms are coded (nonarchitectural).

The message of this section is twofold:

1. Architecture is critical to the realization of many qualities of interest in a system, and these

qualities should be designed in and can be evaluated at the architectural level.

2. Architecture, by itself, is unable to achieve qualities. It provides the foundation for achieving

quality, but this foundation will be to no avail if attention is not paid to the details.

Let's begin our tour of quality attributes. We will examine the following three classes:

SACET-CSE Page 14

1. Qualities of the system. We will focus on availability, modifiability, performance, security,

testability, and usability.

2. Business qualities (such as time to market) that are affected by the architecture.

3. Qualities, such as conceptual integrity, that are about the architecture itself although they

indirectly affect other qualities, such as modifiability.

System Quality Attributes

System quality attributes have been of interest to the software community at least since the 1970s. There

are a variety of published taxonomies and definitions, and many of them have their own research and

practitioner communities. From an architect's perspective, there are three problems with previous

discussions of system quality attributes:

· The definitions provided for an attribute are not operational. It is meaningless to say that a system

will be modifiable. Every system is modifiable with respect to one set of changes and not

modifiable with respect to another. The other attributes are similar.

· A focus of discussion is often on which quality a particular aspect belongs to. Is a system failure an

aspect of availability, an aspect of security, or an aspect of usability? All three attribute communities

would claim ownership of a system failure.

· Each attribute community has developed its own vocabulary. The performance community has

"events" arriving at a system, the security community has "attacks" arriving at a system, the

availability community has "failures" of a system, and the usability community has "user input."

All of these may actually refer to the same occurrence, but are described using different terms.

QUALITY ATTRIBUTE SCENARIOS

A quality attribute scenario is a quality-attribute-specific requirement. It consists of six parts.

· Source of stimulus. This is some entity (a human, a computer system, or any other actuator)

that generated the stimulus.

· Stimulus. The stimulus is a condition that needs to be considered when it arrives at a system.

SACET-CSE Page 15

· Environment. The stimulus occurs within certain conditions. The system may be in an overload

condition or may be running when the stimulus occurs, or some other condition may be true.

· Artifact. Some artifact is stimulated. This may be the whole system or some pieces of it.

· Response. The response is the activity undertaken after the arrival of the stimulus.

· Response measure. When the response occurs, it should be measurable in some fashion so that the

requirement can be tested.

Quality attribute parts

Quality Attribute Scenarios in Practice

General scenarios provide a framework for generating a large number of generic, system-independent,

quality-attribute-specific scenarios. Each is potentially but not necessarily relevant to the system you

are concerned with. To make the general scenarios useful for a particular system, you must make them

system specific.

We now discuss the six most common and important system quality attributes, with the twin goals of

identifying the concepts used by the attribute community and providing a way to generate general

scenarios for that attribute.

SACET-CSE Page 16

AVAILABILITY

MODIFIABILITY

PERFORMANCE

SECURITY

TESTABILITY

USABILITY

Achieving Qualities

 Introducing Tactics
 Availability Tactics
 Modifiability Tactics
 Performance Tactics
 Security Tactics
 Testability Tactics
 Usability Tactics
 Relationship of Tactics to Architectural Patterns

INTRODUCTION TACTICS

A tactic is a design decision that influences the control of a quality attribute response. A system

design consists of a collection of decisions. Some of these decisions help control the quality

attribute responses; others ensure achievement of system functionality. The tactics are those that

architects have been using for years, and we isolate and describe them. We are not inventing

tactics here, just capturing what architects do in practice.

SACET-CSE Page 17

http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.1+Introducing+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.2+Availability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.3+Modifiability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.4+Performance+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.5+Security+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.6+Testability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.7+Usability+Tactics/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/Part+Two+Creating+an+Architecture/Chapter+5.+Achieving+Qualities/5.8+Relationship+of+Tactics+to+Architectural+Patterns/

Tactics are intended to control responses to stimuli.

Each tactic is a design option for the architect. For example, one of the tactics introduces redundancy to

increase the availability of a system. This is one option the architect has to increase availability, but not

the only one. Usually achieving high availability through redundancy implies a concomitant need for

synchronization (to ensure that the redundant copy can be used if the original fails). We see two

immediate ramifications of this example.

1.Tactics can refine other tactics.

2.Patterns package tactics.

Availability Tactics

Goal of availability tactics

Many of the tactics we discuss are available within standard execution environments such as operating

systems, application servers, and database management systems. It is still important to understand the

tactics used so that the effects of using a particular one can be considered during design and evaluation.

All approaches to maintaining availability involve some type of redundancy, some type of health

monitoring to detect a failure, and some type of recovery when a failure is detected.

Summary of availability tactics

SACET-CSE Page 18

Modifiability Tactics
We organize the tactics for modifiability in sets according to their goals. One set has as its goal reducing
the number of modules that are directly affected by a change. We call this set "localize modifications." A

second set has as its goal limiting modifications to the localized modules. We use this set of tactics to
"prevent the ripple effect." Implicit in this distinction is that there are modules directly affected (those

whose responsibilities are adjusted to accomplish the change) and modules indirectly affected by a
change (those whose responsibilities remain unchanged but whose implementation must be changed to

accommodate the directly affected modules). A third set of tactics has as its goal controlling deployment
time and cost. We call this set "defer binding time."

Goal of modifiability tactics

SACET-CSE Page 19

