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UNIT - III 

DIVIDE AND CONQUER 

 

 General method: 

 

 Given a function to compute on ‘n’ inputs the divide-and-conquer 

strategy suggests splitting the inputs into ‘k’ distinct subsets, 1<k<=n, 

yielding ‘k’ sub problems. 

  

 These sub problems must be solved, and then a method must be found 

to combine sub solutions into a solution of the whole. 

 

 If the sub problems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied. 

 

 Often the sub problems resulting from a divide-and-conquer design are 

of the same type as the original problem. 

 

 For those cases the re application of the divide-and-conquer principle is 

naturally expressed by a recursive algorithm. 

 

D And C(Algorithm) is initially invoked as D and C(P), where ‘p’ is the 

problem to be solved. Small(P) is a Boolean-valued function that determines 

whether the i/p size is small enough that the answer can be computed without 

splitting. If this so, the function ‘S’ is invoked. Otherwise, the problem P is 

divided into smaller sub problems. These sub problems P1, P2 …Pk are 

solved by recursive application of D And C. Combine is a function that 

determines the solution to p using the solutions to the ‘k’ sub problems. 

 

 If the size of ‘p’ is n and the sizes of the ‘k’ sub problems are n1, n2 

….nk, respectively, then the computing time of D And C is described by 

the recurrence relation. 

           

       T(n)=      g(n);                                                   n small 

                     T(n1)+T(n2)+……………+T(nk)+f(n);   otherwise. 

 

   Where T(n)  is the time for D And C  on any I/p of size ‘n’. 

                 g(n)  is the time of compute the answer directly for small I/ps. 

                f(n)  is the time for dividing P & combining the solution to                       

                           sub problems. 

 

1. Algorithm D And C(P) 

2. { 

3.       if small(P) then return S(P); 

4.       else 

5.       { 

6.             divide P into smaller instances P1, P2… Pk, k>=1; 

7.             Apply D And C to each of these sub problems; 

8.          return combine (D And C(P1), D And C(P2),,D And C(Pk)); 

9.        } 

10.  } 
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 The complexity of many divide-and-conquer algorithms is given by 

recurrences 

       of the form  

            T(n)  =      T(1)                      n=1 

                             aT(n/b)+f(n)          n>1 

 Where a & b are known constants. 

 We assume that T(1) is known & ‘n’ is a power of b(i.e., n=b^k) 

 One of the methods for solving any such recurrence relation is called 

the substitution method. 

 This method repeatedly makes substitution for each occurrence of the 

function. T is the Right-hand side until all such occurrences disappear. 

 

Example: 

1) Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n. 

We have, 

   T(n)  = 2T(n/2)+n 

            = 2[2T(n/2/2)+n/2]+n = [4T(n/4)+n]+n 

            = 4T(n/4)+2n 

            =4[2T(n/4/2)+n/4]+2n = 4[2T(n/8)+n/4]+2n 

  = 8T(n/8)+n+2n  

            = 8T(n/8)+3n 

                      *  

                      *  

In general, we see that T(n)=2i  T(n/2i )+in., for any log n >=I>=1. 

 

 T(n) =2log n T(n/2log n) + n log n 

 

Corresponding to the choice of  i=log n 

 

 Thus, T(n) = 2log n T(n/2log n) + n log n 

… 

                          = n. T(n/n) + n log n 

                          = n. T(1) + n log n                  [since, log 1=0, 2^0=1] 

                           = 2n + n log n 

 

BINARY SEARCH 
 

Binary search is a problem of determining whether a given element is 

present in the list of elements that are sorted in ascending order. 

Let ai, 1≤i≤n, be the list of elements that are sorted in ascending order. If the 

given element x is present in a list, we are to determine a value j such that a j=x. 

If x is not in the list, the j is set to be zero. 
 

Algorithm for Recursive Binary Search: 

 

1.Algorithm BinSrch (a, i, l, x) 

2.//Given an array a[i : l] of elements in nondecreasing 

3.//order, 1 ≤ i ≤ l, determine whether x is present, and 

4.//if so, return j such that x=a[j]; else return 0. 

5.{ 

6. if (l = i) then // If Small(P) 

7. { 
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8.  if (x = a[i]) then return i; 
9.  else return 0; 

10. } 

11. else 

12. { // Reduce P into a smaller sub problem. 

13.   mid := └(i+l)/2┘; 

14. if (x = a[mid]) then return mid; 

15. else if (x < a[mid]) then 

16.  return BinSrch (a, i, mid -1, x); 

17. else return BinSrch(a, mid+1, i, x); 

18. } 

19. } 
 

Algorithm for Iterative Binary Search: 

 

1. Algorithm Binsearch(a,n,x) 

2. // Given an array a[1:n] of elements in non-decreasing 

3. //order, n>=0,determine whether ‘x’ is present and  

4. // if so, return ‘j’ such that x=a[j]; else return 0. 

5. { 

6. low:=1; high:=n; 

7. while (low<=high) do 

8. { 

9.        mid:=[(low+high)/2]; 

10.        if (x<a[mid]) then high; 

11.        else if(x>a[mid]) then  

                    low=mid+1; 

12.     else return mid; 

13.   } 
14.    return 0; 

15. } 
 

Algorithm Binsrch describes this binary search method, where Binsrch 

has 4 inputs a[], i , l & x. It is initially invoked as Binsrch (a,1,n,x) 

A non-recursive version of Binary search algorithm Binsearch has 3 

inputs a,n,x. The while loop continues processing as long as there are more 

elements left to check. At the conclusion of the procedure 0 is returned if x is 

not present, or ‘j’ is returned, such that a[j]=x. We observe that low & high are 

integer Variables such that each time through the loop either x is found or low 

is increased by at least one or high is decreased at least one. Thus we have 2 

sequences of integers approaching each other and eventually low becomes > 

than high & causes termination in a finite no. of steps if ‘x’ is not present. 

 

Example: 

1) Let us select the 14 entries. 

                     -15,-6,0,7,9,23,54,82,101,112,125,131,142,151.  

 Place them in a[1:14], and simulate the steps Binsearch goes through as it 

searches for different values of ‘x’. 

 Only the variables, low, high & mid need to be traced as we simulate the 

algorithm. 

 We try the following values for x: 151, -14 and 9. 

         for 2 successful searches       &       1 unsuccessful search. 

mid:=[(low+high)/2
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 Table. Shows the traces of Bin search on these 3 steps. 

 

X=151 low  high       mid 

      1  14  7 

                      8               14              11 

                      12             14              13 

                      14             14              14 

           Found 

 

     x=-14             low        high         mid 

 1            14              7 

 1             6               3 

 1             2               1 

 2             2               2 

 2             1           Not found 

  

      x=9               low         high          mid 

 1             14             7 

             1              6              3 

 4              6              5 

                              Found 

 

Theorem:    Algorithm Binsearch(a,n,x) works correctly. 

 

Proof: 

We assume that all statements work as expected and that comparisons such as 

x>a[mid] are appropriately carried out. 

 

 Initially low =1, high= n,n>=0, and a[1]<=a[2]<=……..<=a[n]. 

 If n=0, the while loop is not entered and is returned. 

 Otherwise we observe that each time thro’ the loop the possible 

elements to be checked of or equality with x and a[low], 

a[low+1],……..,a[mid],……a[high]. 

 If x=a[mid], then the algorithm terminates successfully. 

 Otherwise, the range is narrowed by either increasing low to (mid+1) or 

decreasing high to (mid-1). 

 Clearly, this narrowing of the range does not affect the outcome of the 

search. 

 If low becomes > than high, then ‘x’ is not present & hence the loop is 

exited. 

 

MERGE SORT 

 

Merge sort is an example of divide-and-conquer, it is a sorting algorithm that 

has the nice property that is in the worst case its complexity is O(n log n) 

 This algorithm is called merge sort 

 We assume that the elements are to be sorted in non-decreasing order. 

 Given a sequence of ‘n’ elements a[1],…,a[n] the general idea is to 

imagine then split into 2 sets a[1],…..,a[n/2] and a[[n/2]+1],….a[n]. 
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 Each set is individually sorted, and the resulting sorted sequences are 

merged to produce a single sorted sequence of ‘n’ elements. 

 Thus, we have another ideal example of the divide-and-conquer 

strategy in which the splitting is done into 2 equal-sized sets & the 

combining operation is the merging of 2 sorted sets into one. 

 

Algorithm For Merge Sort: 

 

1. Algorithm MergeSort(low,high) 

2. //a[low:high] is a global array to be sorted 

3. //Small(P) is true if there is only one element 

4. //to sort. In this case the list is already sorted. 

5. { 

6. if (low<high) then //if there are more than one element 

7. { 

8. //Divide P into subproblems 

9. //find where to split the set 

10.   mid = [(low+high)/2]; 

11. //solve the subproblems. 

12. mergesort (low,mid); 

13. mergesort(mid+1,high); 

14. //combine the solutions . 

15. merge(low,mid,high); 

16. } 
17. } 

 

Algorithm: Merging 2 sorted subarrays using auxiliary storage. 

 

1. Algorithm merge(low,mid,high) 

2. //a[low:high] is a global array containing  

3. //two sorted subsets in a[low:mid] 

4. //and in a[mid+1:high].The goal is to merge these 2 sets into 

5. //a single set residing in a[low:high].b[] is an auxiliary global array. 

6. { 

7. h=low; I=low; j=mid+1; 

8. while ((h<=mid) and (j<=high)) do 

9. { 

10. if (a[h]<=a[j]) then 

11. { 
12.     b[I]=a[h];   

13.     h = h+1; 

14. } 
15. else 

16. { 
17.     b[I]= a[j]; 

18.      j=j+1; 

19. } 
20. I=I+1; 

21. } 
22. if (h>mid) then 

23.    for k=j to high do  

24.     { 
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25.          b[I]=a[k]; 

26.          I=I+1; 

27.      } 
28.  else 

29.      for k=h to mid do 

30.      { 
31.           b[I]=a[k]; 

32.           I=I+1; 

33.       } 
34.      for k=low to high do a[k] = b[k]; 

35. } 
 

 Consider the array of 10 elements a[1:10] =(310, 285, 179, 652, 351, 

423, 861, 254, 450, 520) 

 

 Algorithm Merge sort begins by splitting a[] into 2 sub arrays each of 

size five (a[1:5] and a[6:10]). 

 The elements in a[1:5] are then split into 2 sub arrays of size 3 (a[1:3] ) 

and 2(a[4:5]) 

 Then the items in a a[1:3] are split into sub arrays of size 2 a[1:2] & 

one(a[3:3]) 

 The 2 values in a[1:2} are split to find time into one-element sub arrays, 

and now the merging begins. 

 

      (310| 285| 179| 652, 351| 423, 861, 254, 450, 520) 

 

 Where vertical bars indicate the boundaries of sub arrays. 

 

Elements a[I] and a[2] are merged to yield,  

       (285, 310|179|652, 351| 423, 861, 254, 450, 520) 

 

 Then a[3] is merged with a[1:2] and  

       (179, 285, 310| 652, 351| 423, 861, 254, 450, 520) 

 

 Next, elements a[4] & a[5] are merged. 

       (179, 285, 310| 351, 652 | 423, 861, 254, 450, 520) 

 

 And then a[1:3] & a[4:5] 

      (179, 285, 310, 351, 652| 423, 861, 254, 450, 520) 

 

 Repeated recursive calls are invoked producing the following sub 

arrays. 

       (179, 285, 310, 351, 652| 423| 861| 254| 450, 520) 

 

 Elements a[6] &a[7] are merged. 

 

Then a[8] is merged with a[6:7] 

      (179, 285, 310, 351, 652| 254,423, 861| 450, 520) 

 

      Next a[9] &a[10] are merged, and then a[6:8] & a[9:10] 

             (179, 285, 310, 351, 652| 254, 423, 450, 520, 861 ) 
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       At this point there are 2 sorted sub arrays & the final merge produces  

the fully sorted result. 

        (179, 254, 285, 310, 351, 423, 450, 520, 652, 861) 

 

 If the time for the merging operations is proportional to ‘n’, then the 

computing time for merge sort is described by the recurrence relation. 

 

 

    T(n) =    a                             n=1,          ’a’ a constant 

                  2T(n/2)+cn             n>1,          ’c’ a constant. 

 

 When ‘n’ is a power of 2, n= 2k, we can solve this equation by successive   

substitution. 

 

      T(n) =2(2T(n/4) +cn/2) +cn 

             = 4T(n/4)+2cn 

             = 4(2T(n/8)+cn/4)+2cn 

                     * 

                     * 

             = 2k T(1)+kCn. 

             = an + cn log n. 

 

 It is easy to see that if sk<n<=2k+1, then T(n)<=T(2k+1). Therefore,  

   T(n)=O(n log n) 

 

QUICK SORT 

 

 The divide-and-conquer approach can be used to arrive at an efficient 

sorting method different from merge sort. 

 

 In merge sort, the file a[1:n] was divided at its midpoint into sub arrays 

which were independently sorted & later merged. 

 

 In Quick sort, the division into 2 sub arrays is made so that the sorted 

sub arrays do not need to be merged later. 

 

 This is accomplished by rearranging the elements in a[1:n] such that 

a[I]<=a[j] for all I between 1 & n and all j between (m+1) & n for some 

m, 1<=m<=n. 

 

 Thus the elements in a[1:m] & a[m+1:n] can be independently sorted. 

 

 No merge is needed. This rearranging is referred to as partitioning. 

 

 Function partition of Algorithm accomplishes an in-place partitioning 

of the elements of a[m:p-1] 

 

 It is assumed that a[p]>=a[m] and that a[m] is the partitioning element. 

If m=1 & p-1=n, then a[n+1] must be defined and must be greater than 

or equal to all elements in a[1:n] 
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 The assumption that a[m] is the partition element is merely for 

convenience, other choices for the partitioning element than the first 

item in the set are better in practice. 

 

 The function interchange (a,I,j) exchanges a[I] with a[j]. 

 

Algorithm: Partition the array a[m:p-1] about a[m] 

 

1. Algorithm Partition(a,m,p)  

2. //within a[m],a[m+1],…..,a[p-1] the elements 

3. // are rearranged in such a manner that if 

4. //initially t=a[m],then after completion  

5. //a[q]=t for some q between m and 

6. //p-1,a[k]<=t for m<=k<q, and  

7. //a[k]>=t for  q<k<p. q is returned  

8. //Set a[p]=infinite. 

9. { 

10. v=a[m];I=m;j=p; 

11. repeat 

12. { 
13.     repeat 

14.          I=I+1; 

15.     until(a[I]>=v); 

16.     repeat 

17.         j=j-1; 

18.     until(a[j]<=v); 

19.     if (I<j) then Interchange(a,i.j); 

20. }until(I>=j); 

21.     a[m]=a[j]; a[j]=v; 

22.     retun j; 

23. } 
  

1. Algorithm Interchange(a,I,j) 

2. //Exchange a[I] with a[j] 

3. { 

4.     p=a[I]; 

5.    a[I]=a[j]; 

6.    a[j]=p; 

7. } 

 

Algorithm: Sorting by Partitioning  

 

1. Algorithm Quicksort(p,q) 

2. //Sort the elements a[p],….a[q] which resides 

3. //is the global array a[1:n] into ascending 

4. //order; a[n+1] is considered to be defined  

5. // and must be >= all the elements in a[1:n] 

6. { 

7. if(p<q) then // If there are more than one element 

8. { 

9. // divide p into 2 subproblems 

10. j= Partition(a,p,q+1); 
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11. //’j’ is the position of the partitioning element. 

12. //solve the subproblems. 

13. Quicksort(p,j-1); 

14. Quicksort(j+1,q); 

15. //There is no need for combining solution. 

16. } 
17. } 
 

Input: Unsorted list of elements 

Output: Sorted list of elements 

Example: 

Consider the list  

 

   65 45 50 55 85 60 80 75 70 ∞ 

Pivot & I                                                                         j 

 

65 70 75 80 85 60 55 50 45 ∞ 

Pivot   I                                                                 j 

                                                                

Since i<J, swap a[i] and a[j] i.e 70 and 45, 

65 45 75 80 85 60 55 50 70 ∞ 

Pivot            I                                               j     

 

Since i<J, swap a[i] and a[j] i.e 75 and 50 

65 45 50 80 85 60 55 75 70 ∞ 

Pivot                      I                           j 

  

Since i<J, swap a[i] and a[j] i.e 80 and 55  

65 45 50 55 85 60 80 75 70 ∞ 

Pivot                                i        j                         

 

Since i<J, swap a[i] and a[j] i.e 85 and 60 

65 45 50 55 60 85 80 75 70 ∞ 

Pivot                                j         I                                  

 

Since i>j swap a[j] with pivot element i.e., 60 and 65 and now partition occurs 

60 45 50 55 65 85 80 75 70 ∞ 

 

List is divided into three sublists: 

List1: 60 45 50 55 (Elements less than pivot) 

List2: 65         (Elements equal to pivot) 

List3: 85 80 75 70 (Elements greater than pivot) 

QuickSort is again applied for List1 and List2. 

Average Time Complexity of Quick Sort: 

 

Let the average case value be TA(n). 

Under the assumptions, the partitioning element v has an equal probability of 

being the ith smallest element, 1≤i≤p-m in a[m:p-1]. Hence the two subarrays 

remaining to be sorted are a[m:j] and a[j+1:p-1] with probability 1/(p-m), 

m≤j<p.  
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From this recurrence obtained is 

TA(n) = n+1+1/n ∑[TA(k-1) + TA(n-k)]                    ---------    1 
                                      1≤k≤n  
The no. of element comparisons required by Partition algorithm on its first 

call is n+1.  

Note TA(0)=TA(1)=0                                                          ---------    2 

 

Multiplying both sides of 1 by n, we get, 

 

nTA(n) = n(n+1)+ ∑[TA(k-1) + TA(n-k)] 
                          1≤k≤n 
=> nTA(n)= n(n+1)+2[TA(0)+TA(1)+  … +TA(n-1)]            ---------   3 

 

Repalacing n by n-1 in 3, we get, 

  

=> (n-1)TA(n-1)= n(n-1)+2[TA(0)+TA(1)+  … +TA(n-2)]        -------- 4 

 

Substracting 3 -4, we get, 

nTA(n) - (n-1)TA(n-1) = 2n + 2TA(n-1) 

=> TA(n)/(n+1) = TA(n-1)/n + 2/(n+1) 

 

By substitution method, 

TA(n)/(n+1) = TA(n-2)/n-1 + 2/n + 2/n+1 

                  = TA(n-3)/n-2 + 2/n-1 + 2/n + 2/n+1 

    : 

         = TA(1)/2 + 2 ∑3≤k≤n+1 1/k 

         = 2 ∑ 3≤k≤n+1 1/k 

Since, 

∑ 3≤k≤n+1 1/k ≤ ∫2 
n+1

 1/x dx = loge (n+1) - loge 2 

Therefore, TA(n) ≤ 2(n+1)[ loge (n+1) - loge 2 ] = O(n log n). 

 

STRASSEN’S MATRIX MULTIPLICAION 

 

 Let A and B be the two n*n Matrix. The product matrix C=AB is 

calculated by using the formula, 

 

C (i ,j )=   A(i,k) B(k,j) for all ‘i’ and  and j between 1 and n. 

 

 The time complexity for the matrix Multiplication is O(n
3

). 

 

 Divide and conquer method suggest another way to compute the 

product of n*n matrix. 

 

 We assume that N is a power of 2 .In the case N is not a power of 2, 

then enough rows and columns of zero can be added to both A and B. 

So that the resulting dimension are the powers of two. 

 

 If n=2 then the following formula as a computed using a matrix 

multiplication operation for the elements of A & B. 
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 If n>2,Then the elements are partitioned into sub matrix n/2*n/2..since 

‘n’ is a power of 2 these product can be recursively computed using the 

same formula .This  Algorithm will continue applying itself to smaller 

sub matrix until ‘N” become suitable small(n=2)  so that  the product is 

computed directly . 

 The formula are  

 

 

A11        A12           B11     B12            C11      C12                         

                     *       = 

A21        A21           B21     B22            C21     C22 

 

 

 

C11 = A11 * B11 + A12 * B21 

C12 = A11 * B12 + A12 * B22 

C21 = A21 * B11 + A22 * B21 

C22 = A21 * B12 + A22 * B22 

 

For EX:  

     2 2 2 2               1  1  1 1 

     4 * 4 =       2 2 2 2                  1  1  1 1 

              2 2 2 2       *      1 1  1 1 

              2 2 2 2                    1 1  1 1 

 

 

The Divide and conquer method 

 

 2  2      2  2           1  1     1   1                4  4     4   4 

      2  2      2  2           1  1     1   1        =      4  4     4   4 

                   2  2     2   2          1  1      1   1               4  4      4   4 

                   2  2     2   2          1  1      1   1               4  4      4   4 

 

 

 To compute AB using the equation we need to perform 8 

multiplication of n/2*n/2 matrix and 4 addition of n/2*n/2 matrix. 

 The time complexity for the above matrix Multiplication is O(n
3

). 

 

 The overall computing time T(n) of the resulting divide and conquer 

algorithm is given by the sequence. 

 

T(n)=     b                   n<=2 a &b are 

              8T(n/2)+cn2         n>2  constant 

 

That is T(n)=O(n3) 

 

 

Matrix multiplication are more expensive then the matrix addition .We can 

attempt to reformulate the equation for  Cij so as to have fewer multiplication 

and possibly more addition . 
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 Strassen has discovered a way to compute the Cij using only  7 

multiplication and 18 addition or subtraction. 

 

 

Strassen’s formula are  

 

P= (A11+A12)(B11+B22) 

Q= (A12+A22)B11 

R= A11(B12-B22) 

S= A22(B21-B11) 

T= (A11+A12)B22 

U= (A21-A11)(B11+B12) 

V= (A12-A22)(B21+B22) 

 

C11=P+S-T+V 

C12=R+t 

C21=Q+T 

C22=P+R-Q+V 

 

The resulting recurrence relation for T(n) is 

 

T(n)=     b         n≤2     a &b are 

              7T(n/2)+an2       n>2     constant 

 

By using substitution method, 

      T(n) = an2 [1 + 7/4 + (7/4)2 + … + (7/4)
k-1

] + 7
K

 T(1)   

              ≤ cn2 (7/4) log2 n + 7 
log2 n 

 , c a constant 

              = cn 
log2 4 + log2 7 – log2 4

 + n log2 7 

     = O(n log2 7) ≈ O(n 
2.81

). 

 

 

 

***** 
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