
Design and Analysis of Algorithms

1

UNIT - III

DIVIDE AND CONQUER

 General method:

 Given a function to compute on ‘n’ inputs the divide-and-conquer

strategy suggests splitting the inputs into ‘k’ distinct subsets, 1<k<=n,

yielding ‘k’ sub problems.

 These sub problems must be solved, and then a method must be found

to combine sub solutions into a solution of the whole.

 If the sub problems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied.

 Often the sub problems resulting from a divide-and-conquer design are

of the same type as the original problem.

 For those cases the re application of the divide-and-conquer principle is

naturally expressed by a recursive algorithm.

D And C(Algorithm) is initially invoked as D and C(P), where ‘p’ is the

problem to be solved. Small(P) is a Boolean-valued function that determines

whether the i/p size is small enough that the answer can be computed without

splitting. If this so, the function ‘S’ is invoked. Otherwise, the problem P is

divided into smaller sub problems. These sub problems P1, P2 …Pk are

solved by recursive application of D And C. Combine is a function that

determines the solution to p using the solutions to the ‘k’ sub problems.

 If the size of ‘p’ is n and the sizes of the ‘k’ sub problems are n1, n2

….nk, respectively, then the computing time of D And C is described by

the recurrence relation.

 T(n)= g(n); n small

 T(n1)+T(n2)+……………+T(nk)+f(n); otherwise.

 Where T(n)  is the time for D And C on any I/p of size ‘n’.

 g(n)  is the time of compute the answer directly for small I/ps.

 f(n)  is the time for dividing P & combining the solution to

 sub problems.

1. Algorithm D And C(P)

2. {

3. if small(P) then return S(P);

4. else

5. {

6. divide P into smaller instances P1, P2… Pk, k>=1;

7. Apply D And C to each of these sub problems;

8. return combine (D And C(P1), D And C(P2),,D And C(Pk));

9. }

10. }

Design and Analysis of Algorithms

2

 The complexity of many divide-and-conquer algorithms is given by

recurrences

 of the form

 T(n) = T(1) n=1

 aT(n/b)+f(n) n>1

 Where a & b are known constants.

 We assume that T(1) is known & ‘n’ is a power of b(i.e., n=b^k)

 One of the methods for solving any such recurrence relation is called

the substitution method.

 This method repeatedly makes substitution for each occurrence of the

function. T is the Right-hand side until all such occurrences disappear.

Example:

1) Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n.

We have,

 T(n) = 2T(n/2)+n

 = 2[2T(n/2/2)+n/2]+n = [4T(n/4)+n]+n

 = 4T(n/4)+2n

 =4[2T(n/4/2)+n/4]+2n = 4[2T(n/8)+n/4]+2n

 = 8T(n/8)+n+2n

 = 8T(n/8)+3n

 *

 *

In general, we see that T(n)=2i T(n/2i)+in., for any log n >=I>=1.

 T(n) =2log n T(n/2log n) + n log n

Corresponding to the choice of i=log n

 Thus, T(n) = 2log n T(n/2log n) + n log n

…

 = n. T(n/n) + n log n

 = n. T(1) + n log n [since, log 1=0, 2^0=1]

 = 2n + n log n

BINARY SEARCH

Binary search is a problem of determining whether a given element is

present in the list of elements that are sorted in ascending order.

Let ai, 1≤i≤n, be the list of elements that are sorted in ascending order. If the

given element x is present in a list, we are to determine a value j such that a j=x.

If x is not in the list, the j is set to be zero.

Algorithm for Recursive Binary Search:

1.Algorithm BinSrch (a, i, l, x)

2.//Given an array a[i : l] of elements in nondecreasing

3.//order, 1 ≤ i ≤ l, determine whether x is present, and

4.//if so, return j such that x=a[j]; else return 0.

5.{

6. if (l = i) then // If Small(P)

7. {

Design and Analysis of Algorithms

3

8. if (x = a[i]) then return i;
9. else return 0;

10. }

11. else

12. { // Reduce P into a smaller sub problem.

13. mid := └(i+l)/2┘;

14. if (x = a[mid]) then return mid;

15. else if (x < a[mid]) then

16. return BinSrch (a, i, mid -1, x);

17. else return BinSrch(a, mid+1, i, x);

18. }

19. }

Algorithm for Iterative Binary Search:

1. Algorithm Binsearch(a,n,x)

2. // Given an array a[1:n] of elements in non-decreasing

3. //order, n>=0,determine whether ‘x’ is present and

4. // if so, return ‘j’ such that x=a[j]; else return 0.

5. {

6. low:=1; high:=n;

7. while (low<=high) do

8. {

9. mid:=[(low+high)/2];

10. if (x<a[mid]) then high;

11. else if(x>a[mid]) then

 low=mid+1;

12. else return mid;

13. }
14. return 0;

15. }

Algorithm Binsrch describes this binary search method, where Binsrch

has 4 inputs a[], i , l & x. It is initially invoked as Binsrch (a,1,n,x)

A non-recursive version of Binary search algorithm Binsearch has 3

inputs a,n,x. The while loop continues processing as long as there are more

elements left to check. At the conclusion of the procedure 0 is returned if x is

not present, or ‘j’ is returned, such that a[j]=x. We observe that low & high are

integer Variables such that each time through the loop either x is found or low

is increased by at least one or high is decreased at least one. Thus we have 2

sequences of integers approaching each other and eventually low becomes >

than high & causes termination in a finite no. of steps if ‘x’ is not present.

Example:

1) Let us select the 14 entries.

 -15,-6,0,7,9,23,54,82,101,112,125,131,142,151.

 Place them in a[1:14], and simulate the steps Binsearch goes through as it

searches for different values of ‘x’.

 Only the variables, low, high & mid need to be traced as we simulate the

algorithm.

 We try the following values for x: 151, -14 and 9.

 for 2 successful searches & 1 unsuccessful search.

mid:=[(low+high)/2

Design and Analysis of Algorithms

4

 Table. Shows the traces of Bin search on these 3 steps.

X=151 low high mid

 1 14 7

 8 14 11

 12 14 13

 14 14 14

 Found

 x=-14 low high mid

 1 14 7

 1 6 3

 1 2 1

 2 2 2

 2 1 Not found

 x=9 low high mid

 1 14 7

 1 6 3

 4 6 5

 Found

Theorem: Algorithm Binsearch(a,n,x) works correctly.

Proof:

We assume that all statements work as expected and that comparisons such as

x>a[mid] are appropriately carried out.

 Initially low =1, high= n,n>=0, and a[1]<=a[2]<=……..<=a[n].

 If n=0, the while loop is not entered and is returned.

 Otherwise we observe that each time thro’ the loop the possible

elements to be checked of or equality with x and a[low],

a[low+1],……..,a[mid],……a[high].

 If x=a[mid], then the algorithm terminates successfully.

 Otherwise, the range is narrowed by either increasing low to (mid+1) or

decreasing high to (mid-1).

 Clearly, this narrowing of the range does not affect the outcome of the

search.

 If low becomes > than high, then ‘x’ is not present & hence the loop is

exited.

MERGE SORT

Merge sort is an example of divide-and-conquer, it is a sorting algorithm that

has the nice property that is in the worst case its complexity is O(n log n)

 This algorithm is called merge sort

 We assume that the elements are to be sorted in non-decreasing order.

 Given a sequence of ‘n’ elements a[1],…,a[n] the general idea is to

imagine then split into 2 sets a[1],…..,a[n/2] and a[[n/2]+1],….a[n].

Design and Analysis of Algorithms

5

 Each set is individually sorted, and the resulting sorted sequences are

merged to produce a single sorted sequence of ‘n’ elements.

 Thus, we have another ideal example of the divide-and-conquer

strategy in which the splitting is done into 2 equal-sized sets & the

combining operation is the merging of 2 sorted sets into one.

Algorithm For Merge Sort:

1. Algorithm MergeSort(low,high)

2. //a[low:high] is a global array to be sorted

3. //Small(P) is true if there is only one element

4. //to sort. In this case the list is already sorted.

5. {

6. if (low<high) then //if there are more than one element

7. {

8. //Divide P into subproblems

9. //find where to split the set

10. mid = [(low+high)/2];

11. //solve the subproblems.

12. mergesort (low,mid);

13. mergesort(mid+1,high);

14. //combine the solutions .

15. merge(low,mid,high);

16. }
17. }

Algorithm: Merging 2 sorted subarrays using auxiliary storage.

1. Algorithm merge(low,mid,high)

2. //a[low:high] is a global array containing

3. //two sorted subsets in a[low:mid]

4. //and in a[mid+1:high].The goal is to merge these 2 sets into

5. //a single set residing in a[low:high].b[] is an auxiliary global array.

6. {

7. h=low; I=low; j=mid+1;

8. while ((h<=mid) and (j<=high)) do

9. {

10. if (a[h]<=a[j]) then

11. {
12. b[I]=a[h];

13. h = h+1;

14. }
15. else

16. {
17. b[I]= a[j];

18. j=j+1;

19. }
20. I=I+1;

21. }
22. if (h>mid) then

23. for k=j to high do

24. {

Design and Analysis of Algorithms

6

25. b[I]=a[k];

26. I=I+1;

27. }
28. else

29. for k=h to mid do

30. {
31. b[I]=a[k];

32. I=I+1;

33. }
34. for k=low to high do a[k] = b[k];

35. }

 Consider the array of 10 elements a[1:10] =(310, 285, 179, 652, 351,

423, 861, 254, 450, 520)

 Algorithm Merge sort begins by splitting a[] into 2 sub arrays each of

size five (a[1:5] and a[6:10]).

 The elements in a[1:5] are then split into 2 sub arrays of size 3 (a[1:3])

and 2(a[4:5])

 Then the items in a a[1:3] are split into sub arrays of size 2 a[1:2] &

one(a[3:3])

 The 2 values in a[1:2} are split to find time into one-element sub arrays,

and now the merging begins.

 (310| 285| 179| 652, 351| 423, 861, 254, 450, 520)

 Where vertical bars indicate the boundaries of sub arrays.

Elements a[I] and a[2] are merged to yield,

 (285, 310|179|652, 351| 423, 861, 254, 450, 520)

 Then a[3] is merged with a[1:2] and

 (179, 285, 310| 652, 351| 423, 861, 254, 450, 520)

 Next, elements a[4] & a[5] are merged.

 (179, 285, 310| 351, 652 | 423, 861, 254, 450, 520)

 And then a[1:3] & a[4:5]

 (179, 285, 310, 351, 652| 423, 861, 254, 450, 520)

 Repeated recursive calls are invoked producing the following sub

arrays.

 (179, 285, 310, 351, 652| 423| 861| 254| 450, 520)

 Elements a[6] &a[7] are merged.

Then a[8] is merged with a[6:7]

 (179, 285, 310, 351, 652| 254,423, 861| 450, 520)

  Next a[9] &a[10] are merged, and then a[6:8] & a[9:10]

 (179, 285, 310, 351, 652| 254, 423, 450, 520, 861)

Design and Analysis of Algorithms

7

  At this point there are 2 sorted sub arrays & the final merge produces

the fully sorted result.

 (179, 254, 285, 310, 351, 423, 450, 520, 652, 861)

 If the time for the merging operations is proportional to ‘n’, then the

computing time for merge sort is described by the recurrence relation.

 T(n) = a n=1, ’a’ a constant

 2T(n/2)+cn n>1, ’c’ a constant.

 When ‘n’ is a power of 2, n= 2k, we can solve this equation by successive

substitution.

 T(n) =2(2T(n/4) +cn/2) +cn

 = 4T(n/4)+2cn

 = 4(2T(n/8)+cn/4)+2cn

 *

 *

 = 2k T(1)+kCn.

 = an + cn log n.

 It is easy to see that if sk<n<=2k+1, then T(n)<=T(2k+1). Therefore,

 T(n)=O(n log n)

QUICK SORT

 The divide-and-conquer approach can be used to arrive at an efficient

sorting method different from merge sort.

 In merge sort, the file a[1:n] was divided at its midpoint into sub arrays

which were independently sorted & later merged.

 In Quick sort, the division into 2 sub arrays is made so that the sorted

sub arrays do not need to be merged later.

 This is accomplished by rearranging the elements in a[1:n] such that

a[I]<=a[j] for all I between 1 & n and all j between (m+1) & n for some

m, 1<=m<=n.

 Thus the elements in a[1:m] & a[m+1:n] can be independently sorted.

 No merge is needed. This rearranging is referred to as partitioning.

 Function partition of Algorithm accomplishes an in-place partitioning

of the elements of a[m:p-1]

 It is assumed that a[p]>=a[m] and that a[m] is the partitioning element.

If m=1 & p-1=n, then a[n+1] must be defined and must be greater than

or equal to all elements in a[1:n]

Design and Analysis of Algorithms

8

 The assumption that a[m] is the partition element is merely for

convenience, other choices for the partitioning element than the first

item in the set are better in practice.

 The function interchange (a,I,j) exchanges a[I] with a[j].

Algorithm: Partition the array a[m:p-1] about a[m]

1. Algorithm Partition(a,m,p)

2. //within a[m],a[m+1],…..,a[p-1] the elements

3. // are rearranged in such a manner that if

4. //initially t=a[m],then after completion

5. //a[q]=t for some q between m and

6. //p-1,a[k]<=t for m<=k<q, and

7. //a[k]>=t for q<k<p. q is returned

8. //Set a[p]=infinite.

9. {

10. v=a[m];I=m;j=p;

11. repeat

12. {
13. repeat

14. I=I+1;

15. until(a[I]>=v);

16. repeat

17. j=j-1;

18. until(a[j]<=v);

19. if (I<j) then Interchange(a,i.j);

20. }until(I>=j);

21. a[m]=a[j]; a[j]=v;

22. retun j;

23. }

1. Algorithm Interchange(a,I,j)

2. //Exchange a[I] with a[j]

3. {

4. p=a[I];

5. a[I]=a[j];

6. a[j]=p;

7. }

Algorithm: Sorting by Partitioning

1. Algorithm Quicksort(p,q)

2. //Sort the elements a[p],….a[q] which resides

3. //is the global array a[1:n] into ascending

4. //order; a[n+1] is considered to be defined

5. // and must be >= all the elements in a[1:n]

6. {

7. if(p<q) then // If there are more than one element

8. {

9. // divide p into 2 subproblems

10. j= Partition(a,p,q+1);

Design and Analysis of Algorithms

9

11. //’j’ is the position of the partitioning element.

12. //solve the subproblems.

13. Quicksort(p,j-1);

14. Quicksort(j+1,q);

15. //There is no need for combining solution.

16. }
17. }

Input: Unsorted list of elements

Output: Sorted list of elements

Example:

Consider the list

 65 45 50 55 85 60 80 75 70 ∞

Pivot & I j

65 70 75 80 85 60 55 50 45 ∞

Pivot I j

Since i<J, swap a[i] and a[j] i.e 70 and 45,

65 45 75 80 85 60 55 50 70 ∞

Pivot I j

Since i<J, swap a[i] and a[j] i.e 75 and 50

65 45 50 80 85 60 55 75 70 ∞

Pivot I j

Since i<J, swap a[i] and a[j] i.e 80 and 55

65 45 50 55 85 60 80 75 70 ∞

Pivot i j

Since i<J, swap a[i] and a[j] i.e 85 and 60

65 45 50 55 60 85 80 75 70 ∞

Pivot j I

Since i>j swap a[j] with pivot element i.e., 60 and 65 and now partition occurs

60 45 50 55 65 85 80 75 70 ∞

List is divided into three sublists:

List1: 60 45 50 55 (Elements less than pivot)

List2: 65 (Elements equal to pivot)

List3: 85 80 75 70 (Elements greater than pivot)

QuickSort is again applied for List1 and List2.

Average Time Complexity of Quick Sort:

Let the average case value be TA(n).

Under the assumptions, the partitioning element v has an equal probability of

being the ith smallest element, 1≤i≤p-m in a[m:p-1]. Hence the two subarrays

remaining to be sorted are a[m:j] and a[j+1:p-1] with probability 1/(p-m),

m≤j<p.

Design and Analysis of Algorithms

10

From this recurrence obtained is

TA(n) = n+1+1/n ∑[TA(k-1) + TA(n-k)] --------- 1
 1≤k≤n
The no. of element comparisons required by Partition algorithm on its first

call is n+1.

Note TA(0)=TA(1)=0 --------- 2

Multiplying both sides of 1 by n, we get,

nTA(n) = n(n+1)+ ∑[TA(k-1) + TA(n-k)]
 1≤k≤n
=> nTA(n)= n(n+1)+2[TA(0)+TA(1)+ … +TA(n-1)] --------- 3

Repalacing n by n-1 in 3, we get,

=> (n-1)TA(n-1)= n(n-1)+2[TA(0)+TA(1)+ … +TA(n-2)] -------- 4

Substracting 3 -4, we get,

nTA(n) - (n-1)TA(n-1) = 2n + 2TA(n-1)

=> TA(n)/(n+1) = TA(n-1)/n + 2/(n+1)

By substitution method,

TA(n)/(n+1) = TA(n-2)/n-1 + 2/n + 2/n+1

 = TA(n-3)/n-2 + 2/n-1 + 2/n + 2/n+1

 :

 = TA(1)/2 + 2 ∑3≤k≤n+1 1/k

 = 2 ∑ 3≤k≤n+1 1/k

Since,

∑ 3≤k≤n+1 1/k ≤ ∫2
n+1

 1/x dx = loge (n+1) - loge 2

Therefore, TA(n) ≤ 2(n+1)[loge (n+1) - loge 2] = O(n log n).

STRASSEN’S MATRIX MULTIPLICAION

 Let A and B be the two n*n Matrix. The product matrix C=AB is

calculated by using the formula,

C (i ,j)= A(i,k) B(k,j) for all ‘i’ and and j between 1 and n.

 The time complexity for the matrix Multiplication is O(n
3

).

 Divide and conquer method suggest another way to compute the

product of n*n matrix.

 We assume that N is a power of 2 .In the case N is not a power of 2,

then enough rows and columns of zero can be added to both A and B.

So that the resulting dimension are the powers of two.

 If n=2 then the following formula as a computed using a matrix

multiplication operation for the elements of A & B.

Design and Analysis of Algorithms

11

 If n>2,Then the elements are partitioned into sub matrix n/2*n/2..since

‘n’ is a power of 2 these product can be recursively computed using the

same formula .This Algorithm will continue applying itself to smaller

sub matrix until ‘N” become suitable small(n=2) so that the product is

computed directly .

 The formula are

A11 A12 B11 B12 C11 C12

 * =

A21 A21 B21 B22 C21 C22

C11 = A11 * B11 + A12 * B21

C12 = A11 * B12 + A12 * B22

C21 = A21 * B11 + A22 * B21

C22 = A21 * B12 + A22 * B22

For EX:

 2 2 2 2 1 1 1 1

 4 * 4 = 2 2 2 2 1 1 1 1

 2 2 2 2 * 1 1 1 1

 2 2 2 2 1 1 1 1

The Divide and conquer method

 2 2 2 2 1 1 1 1 4 4 4 4

 2 2 2 2 1 1 1 1 = 4 4 4 4

 2 2 2 2 1 1 1 1 4 4 4 4

 2 2 2 2 1 1 1 1 4 4 4 4

 To compute AB using the equation we need to perform 8

multiplication of n/2*n/2 matrix and 4 addition of n/2*n/2 matrix.

 The time complexity for the above matrix Multiplication is O(n
3

).

 The overall computing time T(n) of the resulting divide and conquer

algorithm is given by the sequence.

T(n)= b n<=2 a &b are

 8T(n/2)+cn2 n>2 constant

That is T(n)=O(n3)

Matrix multiplication are more expensive then the matrix addition .We can

attempt to reformulate the equation for Cij so as to have fewer multiplication

and possibly more addition .

Design and Analysis of Algorithms

12

 Strassen has discovered a way to compute the Cij using only 7

multiplication and 18 addition or subtraction.

Strassen’s formula are

P= (A11+A12)(B11+B22)

Q= (A12+A22)B11

R= A11(B12-B22)

S= A22(B21-B11)

T= (A11+A12)B22

U= (A21-A11)(B11+B12)

V= (A12-A22)(B21+B22)

C11=P+S-T+V

C12=R+t

C21=Q+T

C22=P+R-Q+V

The resulting recurrence relation for T(n) is

T(n)= b n≤2 a &b are

 7T(n/2)+an2 n>2 constant

By using substitution method,

 T(n) = an2 [1 + 7/4 + (7/4)2 + … + (7/4)
k-1

] + 7
K

 T(1)

 ≤ cn2 (7/4) log2 n + 7
log2 n

 , c a constant

 = cn
log2 4 + log2 7 – log2 4

 + n log2 7

 = O(n log2 7) ≈ O(n
2.81

).

	UNIT - III
	DIVIDE AND CONQUER
	General method:
	BINARY SEARCH
	 If the time for the merging operations is proportional to ‘n’, then the computing time for merge sort is described by the recurrence relation.
	T(n) = a n=1, ’a’ a constant
	2T(n/2)+cn n>1, ’c’ a constant.
	QUICK SORT

