Design and Analysis of Algorithms

UNIT - 111
DIVIDE AND CONQUER

General method:

e Given a function to compute on ‘n’ mputs the divide-and-conquer
strategy suggests sphtting the mputs into ‘k’ distinct subsets, 1<k<=n,
yielding ‘k’ sub problems.

e These sub problems must be solved, and then a method must be found
to combine sub solutions mto a solution of the whole.

e If the sub problems are still relatively large, then the divide-and-
conquer strategy can possibly be reapplied.

e Often the sub problems resulting from a divide-and-conquer design are
of the same type as the original problem.

e For those cases the re application of the divide-and-conquer principle 1s
naturally expressed by a recursive algorithm.

D And C(Algorithm) 1s mitially invoked as D and C(P), where ‘p’ 1s the
problem to be solved. Small(P) 1s a Boolean-valued function that determines
whether the 1/p size 1s small enough that the answer can be computed without
sphtting. If this so, the function ‘S’ 1s mvoked. Otherwise, the problem P 1s
divided mnto smaller sub problems. These sub problems P1, P2 ..Pk are
solved by recursive application of D And C. Combine 1s a function that
determines the solution to p using the solutions to the ‘k’ sub problems.

o If the size of ‘p’ 1s n and the sizes of the Kk’ sub problems are nl, n2
....Ii, respectively, then the computing time of D And C 1s described by
the recurrence relation.

Tm)= gh); n small
Tm)+Tm2)+............... +T(nk)+(n); otherwise.

Where T(n) = 1s the time for D And C on any I/p of size ‘n’.
g(n) =2 1s the time of compute the answer directly for small I/ps.
f(n) = 1s the time for dividing P & combining the solution to
sub problems.

1. Algorithm D And C(P)

2.1

3 if small(P) then return S(P);

4. else

5. {

6 divide P into smaller instances P1, P2... Pk, k>=1;

7 Apply D And C to each of these sub problems;

8. return combine (D And C(P1), D And C(P2),,D And C(Pk));
9. }

10. }

Design and Analysis of Algorithms

e The complexity of many divide-and-conquer algorithms 1is given by
recurrences
of the form
Tm) = T) n=1
aT'(n/b)+(n) n>1
- Where a & b are known constants.
- We assume that T(1) is known & ‘n’ is a power of b(i.e., n=b”k)
e One of the methods for solving any such recurrence relation 1s called
the substitution method.
e This method repeatedly makes substitution for each occurrence of the
function. T 1s the Right-hand side until all such occurrences disappear.

Example:
1) Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n.
We have,
Tmn) =2T({10/2)+n
= 2|12T(n/2/2)+n/2]+n = [4T(n/4)+n]+n
= 4T(n/4)+2n
=412T(n/4/2)+n/4]+2n = 4|2 T (n/8)+n/4]+2n
= 8T'(n/8)+n+2n
= 8T (n/8)+3n

*

In general, we see that T(n)=2'T'(n/2')+n., for any log n >=I>=1.
-2 T(n) =2"" T(n/2*") + n log n
- Corresponding to the choice of i=log n
- Thus, T(n) = 2" T(n/2*") + nlogn

=n. T(n/n) + nlogn
=n. T(1) + nlogn [since, log 1=0, 20=1]
=2n+nlogn

BINARY SEARCH

Binary search is a problem of determining whether a given element 1s
present in the list of elements that are sorted in ascending order.
Let a;, 1<1<n, be the list of elements that are sorted 1 ascending order. If the
given element x 1s present mn a list, we are to determine a value j such that a=x.
If x 1s not n the list, the j 1s set to be zero.

Algorithm for Recursive Binary Search:

1.Algorithm BinSrch (a, 4, /, x)

2.//Given an array als : /] of elements in nondecreasing
3.//order, 1 <15 I, determine whether x1s present, and
4.//if so, return j such that x=afj}, else return 0.

54
6. if (/ =1) then // If Small(P)
7. {

Design and Analysis of Algorithms

8. if (x = a/i)) then return 7,
9. else return ¢,

10. }

11. else

12. {// Reduce P into a smaller sub problem.
13. mid = Lﬁ+])/2J ;

14. if (x = a[mud]) then return mid;

15. elseif (x < a[mud]) then

16. return BinSrch (a, 1, mid -1, x);
17. else return BinSrch(a, mid+1, 1, x);
18. }

19.}

Algorithm for Iterative Binary Search:

Algorithm Binsearch(a,n,x)

// Given an array a[l:n] of elements in non-decreasing
//order, n>=0,determine whether ‘x’ 1s present and

// 1f so, return ‘J” such that x=alj]; else return 0.

{

low:=1; high:=n;

while (low<=high) do

{

N —

mid:=[(low+high)/2];

0. if (x<a[mid]) then high;

1 else if(x>a[mid]) then
low=mid+1;

12. else return md;

13. }

14. return O;

15.}

el e N

Algorithm Binsrch describes this binary search method, where Binsrch
has 4 inputs al], 1, I & x. It 1s imtially invoked as Binsrch (a,1,n,x)

A non-recursive version of Binary search algorithm Binsearch has 3
mputs a,n,x. The while loop continues processing as long as there are more
elements left to check. At the conclusion of the procedure 0 1s returned 1if x 1s
not present, or j’ 1s returned, such that afj]=x. We observe that low & high are
mteger Variables such that each time through the loop either x 1s found or low
1s increased by at least one or high 1s decreased at least one. Thus we have 2
sequences of integers approaching each other and eventually low becomes >
than high & causes termination i a finite no. of steps if ‘x’ 1s not present.

Example:
1) Let us select the 14 entries.
-15,-6,0,7,9,23,564,82,101,112,125,131,142,151.
- Place them in a[l:14], and simulate the steps Binsearch goes through as it
searches for different values of ‘x’.
- Only the variables, low, high & mid need to be traced as we simulate the
algorithm.
- We try the following values for x: 151, -14 and 9.
for 2 successful searches & 1 unsuccesstul search.

mid:=[(low+high)/2

Design and Analysis of Algorithms

e Table. Shows the traces of Bin search on these 3 steps.

X=151 low high mid
1 14 7
8 14 11
12 14 13
14 14 14
Found
x—-14 low high mud
1 14 7
1 6 3
1 2 1
2 2 2
2 1 Not found
x=9 low high mud
1 14 7
1 6 3
4 6 5
Found

Theorem: Algorithm Binsearch(a,n,x) works correctly.

Proof:

We assume that all statements work as expected and that comparisons such as
x>almid| are appropriately carried out.

e Initially low =1, high= n,n>=0, and a[l]<=a|2]|<=........ <=a|n].

e If n=0, the while loop 1s not entered and 1s returned.

e Otherwise we observe that each time thro’ the loop the possible
elements to be checked of or equality with x and allowl],
allow+1],........ ,a[midl,......a[high].

e If x=a|mid], then the algorithm terminates successfully.

e Otherwise, the range is narrowed by either increasing low to (mid+1) or
decreasing high to (mid-1).

e (learly, this narrowing of the range does not affect the outcome of the
search.

e [f low becomes > than high, then ‘X’ 1s not present & hence the loop 1s
exited.

MERGE SORT

Merge sort 1s an example of divide-and-conquer, 1t 1s a sorting algorithm that
has the nice property that 1s in the worst case its complexity 1s O(n log n)

e This algorithm 1s called merge sort

e We assume that the elements are to be sorted in non-decreasing order.

e Given a sequence of ‘n’ elements a[ll,...,a[ln] the general idea 1s to
mmagine then split into 2 sets a[l],.....,a[n/2| and a[[n/2]+1],....a[n].

Design

and Analysis of Algorithms

Fach set 1s individually sorted, and the resulting sorted sequences are
merged to produce a single sorted sequence of ‘n’ elements.
Thus, we have another 1deal example of the divide-and-conquer
strategy 1n which the sphtting 1s done mto 2 equal-sized sets & the
combining operation 1s the merging of 2 sorted sets into one.

Algorithm For Merge Sort:

1. Algorithm MergeSort(low,high)

2. //allow:high] 1s a global array to be sorted

3. //Small(P) 1s true 1f there 1s only one element
4. //to sort. In this case the list 1s already sorted.
5.1

6. 1f (low<high) then //if there are more than one element
7. {

8. //Divide P into subproblems

9. //find where to split the set

10. mud = [(low+high)/2];

11.//solve the subproblems.

12.
13.
14.
15.
16.
17.

mergesort (low,mid);
mergesort(mid+1,high);
//combine the solutions .
merge (low,mid,high);

}

}

Algorithm: Merging 2 sorted subarrays using auxiliary storage.

= LN =

%N o

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

Algorithm merge (low,mid,high)
//allow:high] 1s a global array containing
//two sorted subsets in allow:mid]
//and i almid+1:high]. The goal 1s to merge these 2 sets into
//a single set residing in a[low:high].b[] 1s an auxiliary global array.
{
h=low; I=low; j=mid+1;
while ((h<=mid) and (j<=high)) do
{
if (alh]<=alj]) then
{

b[I]=alhl];

h = h+1;
}
else
{

b[Il= a[jl;

\ipig ¥
}
I=I+1;
}
if (h>mud) then

for k=j to high do

{

Design and Analysis of Algorithms

25. b[I]=alk];

20. I=I+1;

27. '}

28. else

29. for k=h to mid do

30. |

31. b[I]=alkl;

32. I=1+1;

33. }

34. for k=low to high do a[k] = b[k];
35.)

e Consider the array of 10 elements a[l1:10] =(310, 285, 179, 652, 351,
423, 861, 254, 450, 520)

e Algorithm Merge sort begins by splitting a[|] into 2 sub arrays each of
size five (a[l:5] and a[6:10]).

e The elements in a[l:5] are then split into 2 sub arrays of size 3 (a[1:3])
and 2(a[4:5])

e Then the items in a a[l:3] are split into sub arrays of size 2 a[l:2] &
one(a[3:3])

o The 2 values in a[1:2} are split to find time into one-element sub arrays,
and now the merging begins.

(310 285]| 179 652, 351 423, 861, 254, 450, 520)
- Where vertical bars indicate the boundaries of sub arrays.

- Elements a[l] and a[2] are merged to yield,
(285, 310 179|652, 351 | 423, 861, 254, 450, 520)

- Then a[3] is merged with a[1:2] and
(179, 285, 810| 652, 351 | 423, 861, 254, 450, 520)

= Next, elements a[4] & a[5] are merged.

(179, 285, 310| 351, 652 | 428, 861, 254, 450, 520)

- And then a[l:3] & a[4:5]
(179, 285, 310, 351, 652 423, 861, 254, 450, 520)

- Repeated recursive calls are invoked producing the following sub
arrays.

(179, 285, 310, 351, 652 423| 861 254 450, 520)
- Elements a[6] &al7] are merged.

—>Then a[8] 1s merged with a[6:7]
(179, 285, 310, 351, 652 254,423, 861 | 450, 520)

- Next a[9] &a[10] are merged, and then a[6:8] & a[9:10]
(179, 285, 310, 351, 652| 254, 423, 450, 520, 861)

6

Design and Analysis of Algorithms

- At this point there are 2 sorted sub arrays & the final merge produces
the fully sorted result.
(179, 2564, 285, 310, 351, 423, 450, 520, 652, 861)

e If the time for the merging operations 1s proportional to ‘n’, then the
computing time for merge sort 1s described by the recurrence relation.

Tm)= a n=1, ’a’ a constant
2T (n/2)+cn n>1, ¢’ a constant.

- When ‘n’ is a power of 2, n= 2%, we can solve this equation by successive
substitution.

T(n) =2(2T(n/4) +cn/2) +cen
= 4T (n/4)+2cn
= 42T (n/8)+cn/4)+2cn

*

= 2°T(1)+kCn.

=an + cn log n.

- It is easy to see that if s'<n<=2*+1, then T(n)<=T(2"+1). Therefore,
T(n)=0O(n log n)

QUICK SORT

e The divide-and-conquer approach can be used to arrive at an efficient
sorting method different from merge sort.

e In merge sort, the file a[l:n] was divided at its midpoint into sub arrays
which were independently sorted & later merged.

e In Quick sort, the division into 2 sub arrays 1s made so that the sorted
sub arrays do not need to be merged later.

e This i1s accomplished by rearranging the elements in a[l:n] such that
alI]<=a[j] for all I between 1 & n and all j between (m+1) & n for some
m, 1<=m<=n.

e Thus the elements in a[l:m] & a[m+1:n| can be independently sorted.
e No merge 1s needed. This rearranging 1s referred to as partitioning.

e Function partiton of Algorithm accomplishes an n-place partiioning
of the elements of alm:p-1]

o It is assumed that a[p|>=a[m] and that a[m] 1s the partitoning element.
If m=1 & p-1=n, then a[n+1] must be defined and must be greater than
or equal to all elements in a[l:m]

Design and Analysis of Algorithms

e The assumption that alm] 1s the partiton element i1s merely for
convenience, other choices for the partitoning element than the first
item 1n the set are better in practice.

e The function interchange (a,l,j)) exchanges a[l] with alj].
Algorithm: Partition the array alm:p-1] about a[m|]

Algorithm Partition(a,m,p)

//within a[m],a[m+1],.....,a[p-1] the elements
// are rearranged n such a manner that if
//initially t=a[m],then after completion
//alq]=t for some q between m and
//p-1,alk]<=t for m<=k<q, and
//alk]>=t for q<k<p. q 1s returned
//Set a[p]=1nfinite.

9. {

10.v=a[m];I=m;=p;

I 1.repeat

12.4

13. repeat

14. I=1+1;

15. untl@[I]>=v);

16. repeat

7. =L

18. untl(alj]<=v);

19. 1if (I<)) then Interchange(a,i);

20. huntl(I>=));

21. alm]=aljl; alj]=v;

22. retun J;

23.}

= o=

PN

Algorithm Interchange(a,l,))
//Exchange a[l] with alj]
{
p=alll;
al[I]=aljl;
aljl=p;
}

Sy o =

N o G

Algorithm: Sorting by Partitioning

1. Algorithm Quicksort(p,q)

2. //Sort the elements a[p],....a[q] which resides

3. //1s the global array a[l:n] into ascending

4. //order; aln+1] 1s considered to be defined

5. // and must be >= all the elements 1n a[l:n]

6. {

7. 1f(p<q) then // If there are more than one element
8. {

9. // divide p into 2 subproblems

10.)= Partition(a,p,q+1);

Design and Analysis of Algorithms

11.//77 1s the position of the partitioning element.
12.//solve the subproblems.

13.Quicksort(p,j-1);

14.Quicksort(j+1,9);

15.//There 1s no need for combining solution.
16.}

17.}

Input: Unsorted list of elements
Output: Sorted list of elements
Example:

Consider the list

G545 50 55 8 60 80 75 70 o
Pvot & 1]

©5) 70 75 80 8 60 55 50 45
Pivot 1 J

Since 1<]J, swap ali] and alj] 1.e 70 and 45,
45 75 80 85 60 %) 50 70 0
Pivot I]

Since 1<J, swap ali] and afj] 1.e 75 and 50
45 50 80 85 60 55 75 70 o
Pivot |]

Since 1<], swap ali] and alj] 1.e 80 and 55
45 50 55 8 60 80 75 70 oo
Pivot 1]

Since 1<J, swap ali] and afj] 1.e 85 and 60
45 50 55 60 8 80 75 70 o=
Pivot] I

Since 1>) swap alj] with pivot element 1.e., 60 and 65 and now partition occurs

60 45 50 55 (65 8 80 75 70 o

List 1s divided mto three sublists:

Listl: 60 45 50 55 (Elements less than pivot)
List2: 65 (Elements equal to pivot)
List3: 85 80 75 70 (Elements greater than pivot)
QuickSort 1s again applied for Listl and List2.

Average Time Complexity of Quick Sort:

Let the average case value be Ta(n).

Under the assumptions, the partiioning element v has an equal probability of
being the ith smallest element, 1<i<p-m i a[m:p-1]. Hence the two subarrays
remaining to be sorted are alm:| and a[j+1:p-1] with probability 1/(p-m),
msj<p.

Design and Analysis of Algorithms

From this recurrence obtained 1s

Tim) = n+1+1/n Y [Tuk-1) + Tan-k)] 1
1<k<n

The no. of element comparisons required by Partiion algorithm on its first
call 1s n+1.

Note T—\(O):T—\(l):O --------- 2
Multiplying both sides of 1 by n, we get,
n'Ts(n) = n(n+1)+ Y [Ta(k-1) + Ta(n-k)]

1<k<n

> nT\(n)= n(n+1)+2[TAO)+TA()+ ...+ TAM®-1)] ——o- 3
Repalacing n by n-1 i 3, we get,
= (n-1)Ta(n-1)= n(n-1)+2[TAO)+TA(1)+ ... +TAM-2)] ——— 4

Substracting 3 -4, we get,
nTs(n) - (n-1)Ts(n-1) = 2n + 2T\ (n-1)
=>T\(n)/(n+1) = Ta(n-1)/n + 2/(n+1)

By substitution method,
Ti(m)/(n+1) = Tsx(n-2)/n-1 + 2/n + 2/n+1
=T\(n-3)/n-2 + 2/n-1 + 2/n + 2/n+1

= T\(l)/? + 2 ZBSI«SHH l/k
= 2 Z 3<k<n+1 l/k

Since,
Y st 1/k < f2 v 1/x dx = loge (n+1) - loge 2
Therefore, Ta(n) < 2(n+1)[loge (n+1) -loge 2] = O(n log n).

STRASSEN’S MATRIX MULTIPLICAION

o Let A and B be the two n"n Matrix. The product matrix C=AB 1s
calculated by using the formula,

CGy)= AGk) B(ky forall 1’ and and j between 1 and n.
e The time complexity for the matrix Multiplication 1s O(n3).

e Divide and conquer method suggest another way to compute the
product of n*n matrix.

e We assume that N 1s a power of 2 .In the case N 1s not a power of 2,
then enough rows and columns of zero can be added to both A and B.
So that the resulting dimension are the powers of two.

e If n=2 then the following formula as a computed using a matrix
multiplication operation for the elements of A & B.

10

Design and Analysis of Algorithms

It n>2, Then the elements are partitoned mnto sub matrix n/2*n/2..since
‘n’ 1s a power of 2 these product can be recursively computed using the
same formula . This Algorithm will continue applying itself to smaller
sub matrix until ‘N” become suitable small(n=2) so that the product 1s

computed directly .
e The formula are

All Al? Bll Bl? 11 C12

AQI A?l B?l BQQ 21 C22

Ciu=Aun*"Bu+ A" Bu

Cio= A" Big+ A2 " B

Coi = Aot * Buu + A2 * Ba

Coo= Ao * Bio+ Ao ™ By

For EX:
2229 1111

4 7* 4= 2229 1 111
2229 * 1111
2222 1111

The Divide and conquer method
29 zz‘ tl‘l‘l‘ 4‘4‘j4 ’
22112 2 111 1 = (44 4
22(2‘ 1‘1‘1‘1‘ ‘4 ‘4‘4 ‘
2212 2 1 11 Al 4

e To compute AB using the equation we need to perform 8
multiplication of n/2”"n/2 matrix and 4 addition of n/2*n/2 matrix.

e The time complexity for the above matrix Multiplication 1s O(ng).

e The overall computing time T(n) of the resulting divide and conquer
algorithm 1s given by the sequence.

Tm)= b

8T (n/2)+cn’

That is T(n)=0O(n"

n<=2 a &b are
n>2 constant

Matrix multiplication are more expensive then the matrix addition .We can
attempt to reformulate the equation for Ciso as to have fewer multiplication

and possibly more addition .

11

Design and Analysis of Algorithms

e Strassen has discovered a way to compute the Ci using only 7
multiplication and 18 addition or subtraction.

Strassen’s formula are

P= (A1i+A12) (B11+Bg)
Q= (A12+A22)B1i

R= A11(B12-Bg)

S= Ax(Boi-Bi1)

T= (A11+A12) Bae

U= (A21-A11)(B11+Big)
V= (A12-A2) (B21+B)

Cu=P+S-T+V
Ci=R+t
Co=Q+T
Coo=P+R-Q+V

The resulting recurrence relation for T'(n) 1s

Tm)=r b n<?2 a&b are
JL7T(n/2)+an2 n>2 constant

By using substitution method,
Tm) = an’ [1+7/4+ 7/A4) + ..+ 7/H) 1+ 7" T(1)

. log2 n
<cn’ (7/4) logon + 7 * , C a constant

log2 4 +1og2 7 - log2 4
=cn +n log,7

2.81

=0OMmlog:7)=0OMm).

EE

12

	UNIT - III
	DIVIDE AND CONQUER
	General method:
	BINARY SEARCH
	 If the time for the merging operations is proportional to ‘n’, then the computing time for merge sort is described by the recurrence relation.
	T(n) = a n=1, ’a’ a constant
	2T(n/2)+cn n>1, ’c’ a constant.
	QUICK SORT

