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UNIT - III 

DIVIDE AND CONQUER 

 

 General method: 

 

 Given a function to compute on ‘n’ inputs the divide-and-conquer 

strategy suggests splitting the inputs into ‘k’ distinct subsets, 1<k<=n, 

yielding ‘k’ sub problems. 

  

 These sub problems must be solved, and then a method must be found 

to combine sub solutions into a solution of the whole. 

 

 If the sub problems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied. 

 

 Often the sub problems resulting from a divide-and-conquer design are 

of the same type as the original problem. 

 

 For those cases the re application of the divide-and-conquer principle is 

naturally expressed by a recursive algorithm. 

 

D And C(Algorithm) is initially invoked as D and C(P), where ‘p’ is the 

problem to be solved. Small(P) is a Boolean-valued function that determines 

whether the i/p size is small enough that the answer can be computed without 

splitting. If this so, the function ‘S’ is invoked. Otherwise, the problem P is 

divided into smaller sub problems. These sub problems P1, P2 …Pk are 

solved by recursive application of D And C. Combine is a function that 

determines the solution to p using the solutions to the ‘k’ sub problems. 

 

 If the size of ‘p’ is n and the sizes of the ‘k’ sub problems are n1, n2 

….nk, respectively, then the computing time of D And C is described by 

the recurrence relation. 

           

       T(n)=      g(n);                                                   n small 

                     T(n1)+T(n2)+……………+T(nk)+f(n);   otherwise. 

 

   Where T(n)  is the time for D And C  on any I/p of size ‘n’. 

                 g(n)  is the time of compute the answer directly for small I/ps. 

                f(n)  is the time for dividing P & combining the solution to                       

                           sub problems. 

 

1. Algorithm D And C(P) 

2. { 

3.       if small(P) then return S(P); 

4.       else 

5.       { 

6.             divide P into smaller instances P1, P2… Pk, k>=1; 

7.             Apply D And C to each of these sub problems; 

8.          return combine (D And C(P1), D And C(P2),,D And C(Pk)); 

9.        } 

10.  } 
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 The complexity of many divide-and-conquer algorithms is given by 

recurrences 

       of the form  

            T(n)  =      T(1)                      n=1 

                             aT(n/b)+f(n)          n>1 

 Where a & b are known constants. 

 We assume that T(1) is known & ‘n’ is a power of b(i.e., n=b^k) 

 One of the methods for solving any such recurrence relation is called 

the substitution method. 

 This method repeatedly makes substitution for each occurrence of the 

function. T is the Right-hand side until all such occurrences disappear. 

 

Example: 

1) Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n. 

We have, 

   T(n)  = 2T(n/2)+n 

            = 2[2T(n/2/2)+n/2]+n = [4T(n/4)+n]+n 

            = 4T(n/4)+2n 

            =4[2T(n/4/2)+n/4]+2n = 4[2T(n/8)+n/4]+2n 

  = 8T(n/8)+n+2n  

            = 8T(n/8)+3n 

                      *  

                      *  

In general, we see that T(n)=2i  T(n/2i )+in., for any log n >=I>=1. 

 

 T(n) =2log n T(n/2log n) + n log n 

 

Corresponding to the choice of  i=log n 

 

 Thus, T(n) = 2log n T(n/2log n) + n log n 

… 

                          = n. T(n/n) + n log n 

                          = n. T(1) + n log n                  [since, log 1=0, 2^0=1] 

                           = 2n + n log n 

 

BINARY SEARCH 
 

Binary search is a problem of determining whether a given element is 

present in the list of elements that are sorted in ascending order. 

Let ai, 1≤i≤n, be the list of elements that are sorted in ascending order. If the 

given element x is present in a list, we are to determine a value j such that a j=x. 

If x is not in the list, the j is set to be zero. 
 

Algorithm for Recursive Binary Search: 

 

1.Algorithm BinSrch (a, i, l, x) 

2.//Given an array a[i : l] of elements in nondecreasing 

3.//order, 1 ≤ i ≤ l, determine whether x is present, and 

4.//if so, return j such that x=a[j]; else return 0. 

5.{ 

6. if (l = i) then // If Small(P) 

7. { 
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8.  if (x = a[i]) then return i; 
9.  else return 0; 

10. } 

11. else 

12. { // Reduce P into a smaller sub problem. 

13.   mid := └(i+l)/2┘; 

14. if (x = a[mid]) then return mid; 

15. else if (x < a[mid]) then 

16.  return BinSrch (a, i, mid -1, x); 

17. else return BinSrch(a, mid+1, i, x); 

18. } 

19. } 
 

Algorithm for Iterative Binary Search: 

 

1. Algorithm Binsearch(a,n,x) 

2. // Given an array a[1:n] of elements in non-decreasing 

3. //order, n>=0,determine whether ‘x’ is present and  

4. // if so, return ‘j’ such that x=a[j]; else return 0. 

5. { 

6. low:=1; high:=n; 

7. while (low<=high) do 

8. { 

9.        mid:=[(low+high)/2]; 

10.        if (x<a[mid]) then high; 

11.        else if(x>a[mid]) then  

                    low=mid+1; 

12.     else return mid; 

13.   } 
14.    return 0; 

15. } 
 

Algorithm Binsrch describes this binary search method, where Binsrch 

has 4 inputs a[], i , l & x. It is initially invoked as Binsrch (a,1,n,x) 

A non-recursive version of Binary search algorithm Binsearch has 3 

inputs a,n,x. The while loop continues processing as long as there are more 

elements left to check. At the conclusion of the procedure 0 is returned if x is 

not present, or ‘j’ is returned, such that a[j]=x. We observe that low & high are 

integer Variables such that each time through the loop either x is found or low 

is increased by at least one or high is decreased at least one. Thus we have 2 

sequences of integers approaching each other and eventually low becomes > 

than high & causes termination in a finite no. of steps if ‘x’ is not present. 

 

Example: 

1) Let us select the 14 entries. 

                     -15,-6,0,7,9,23,54,82,101,112,125,131,142,151.  

 Place them in a[1:14], and simulate the steps Binsearch goes through as it 

searches for different values of ‘x’. 

 Only the variables, low, high & mid need to be traced as we simulate the 

algorithm. 

 We try the following values for x: 151, -14 and 9. 

         for 2 successful searches       &       1 unsuccessful search. 

mid:=[(low+high)/2
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 Table. Shows the traces of Bin search on these 3 steps. 

 

X=151 low  high       mid 

      1  14  7 

                      8               14              11 

                      12             14              13 

                      14             14              14 

           Found 

 

     x=-14             low        high         mid 

 1            14              7 

 1             6               3 

 1             2               1 

 2             2               2 

 2             1           Not found 

  

      x=9               low         high          mid 

 1             14             7 

             1              6              3 

 4              6              5 

                              Found 

 

Theorem:    Algorithm Binsearch(a,n,x) works correctly. 

 

Proof: 

We assume that all statements work as expected and that comparisons such as 

x>a[mid] are appropriately carried out. 

 

 Initially low =1, high= n,n>=0, and a[1]<=a[2]<=……..<=a[n]. 

 If n=0, the while loop is not entered and is returned. 

 Otherwise we observe that each time thro’ the loop the possible 

elements to be checked of or equality with x and a[low], 

a[low+1],……..,a[mid],……a[high]. 

 If x=a[mid], then the algorithm terminates successfully. 

 Otherwise, the range is narrowed by either increasing low to (mid+1) or 

decreasing high to (mid-1). 

 Clearly, this narrowing of the range does not affect the outcome of the 

search. 

 If low becomes > than high, then ‘x’ is not present & hence the loop is 

exited. 

 

MERGE SORT 

 

Merge sort is an example of divide-and-conquer, it is a sorting algorithm that 

has the nice property that is in the worst case its complexity is O(n log n) 

 This algorithm is called merge sort 

 We assume that the elements are to be sorted in non-decreasing order. 

 Given a sequence of ‘n’ elements a[1],…,a[n] the general idea is to 

imagine then split into 2 sets a[1],…..,a[n/2] and a[[n/2]+1],….a[n]. 
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 Each set is individually sorted, and the resulting sorted sequences are 

merged to produce a single sorted sequence of ‘n’ elements. 

 Thus, we have another ideal example of the divide-and-conquer 

strategy in which the splitting is done into 2 equal-sized sets & the 

combining operation is the merging of 2 sorted sets into one. 

 

Algorithm For Merge Sort: 

 

1. Algorithm MergeSort(low,high) 

2. //a[low:high] is a global array to be sorted 

3. //Small(P) is true if there is only one element 

4. //to sort. In this case the list is already sorted. 

5. { 

6. if (low<high) then //if there are more than one element 

7. { 

8. //Divide P into subproblems 

9. //find where to split the set 

10.   mid = [(low+high)/2]; 

11. //solve the subproblems. 

12. mergesort (low,mid); 

13. mergesort(mid+1,high); 

14. //combine the solutions . 

15. merge(low,mid,high); 

16. } 
17. } 

 

Algorithm: Merging 2 sorted subarrays using auxiliary storage. 

 

1. Algorithm merge(low,mid,high) 

2. //a[low:high] is a global array containing  

3. //two sorted subsets in a[low:mid] 

4. //and in a[mid+1:high].The goal is to merge these 2 sets into 

5. //a single set residing in a[low:high].b[] is an auxiliary global array. 

6. { 

7. h=low; I=low; j=mid+1; 

8. while ((h<=mid) and (j<=high)) do 

9. { 

10. if (a[h]<=a[j]) then 

11. { 
12.     b[I]=a[h];   

13.     h = h+1; 

14. } 
15. else 

16. { 
17.     b[I]= a[j]; 

18.      j=j+1; 

19. } 
20. I=I+1; 

21. } 
22. if (h>mid) then 

23.    for k=j to high do  

24.     { 
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25.          b[I]=a[k]; 

26.          I=I+1; 

27.      } 
28.  else 

29.      for k=h to mid do 

30.      { 
31.           b[I]=a[k]; 

32.           I=I+1; 

33.       } 
34.      for k=low to high do a[k] = b[k]; 

35. } 
 

 Consider the array of 10 elements a[1:10] =(310, 285, 179, 652, 351, 

423, 861, 254, 450, 520) 

 

 Algorithm Merge sort begins by splitting a[] into 2 sub arrays each of 

size five (a[1:5] and a[6:10]). 

 The elements in a[1:5] are then split into 2 sub arrays of size 3 (a[1:3] ) 

and 2(a[4:5]) 

 Then the items in a a[1:3] are split into sub arrays of size 2 a[1:2] & 

one(a[3:3]) 

 The 2 values in a[1:2} are split to find time into one-element sub arrays, 

and now the merging begins. 

 

      (310| 285| 179| 652, 351| 423, 861, 254, 450, 520) 

 

 Where vertical bars indicate the boundaries of sub arrays. 

 

Elements a[I] and a[2] are merged to yield,  

       (285, 310|179|652, 351| 423, 861, 254, 450, 520) 

 

 Then a[3] is merged with a[1:2] and  

       (179, 285, 310| 652, 351| 423, 861, 254, 450, 520) 

 

 Next, elements a[4] & a[5] are merged. 

       (179, 285, 310| 351, 652 | 423, 861, 254, 450, 520) 

 

 And then a[1:3] & a[4:5] 

      (179, 285, 310, 351, 652| 423, 861, 254, 450, 520) 

 

 Repeated recursive calls are invoked producing the following sub 

arrays. 

       (179, 285, 310, 351, 652| 423| 861| 254| 450, 520) 

 

 Elements a[6] &a[7] are merged. 

 

Then a[8] is merged with a[6:7] 

      (179, 285, 310, 351, 652| 254,423, 861| 450, 520) 

 

      Next a[9] &a[10] are merged, and then a[6:8] & a[9:10] 

             (179, 285, 310, 351, 652| 254, 423, 450, 520, 861 ) 
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       At this point there are 2 sorted sub arrays & the final merge produces  

the fully sorted result. 

        (179, 254, 285, 310, 351, 423, 450, 520, 652, 861) 

 

 If the time for the merging operations is proportional to ‘n’, then the 

computing time for merge sort is described by the recurrence relation. 

 

 

    T(n) =    a                             n=1,          ’a’ a constant 

                  2T(n/2)+cn             n>1,          ’c’ a constant. 

 

 When ‘n’ is a power of 2, n= 2k, we can solve this equation by successive   

substitution. 

 

      T(n) =2(2T(n/4) +cn/2) +cn 

             = 4T(n/4)+2cn 

             = 4(2T(n/8)+cn/4)+2cn 

                     * 

                     * 

             = 2k T(1)+kCn. 

             = an + cn log n. 

 

 It is easy to see that if sk<n<=2k+1, then T(n)<=T(2k+1). Therefore,  

   T(n)=O(n log n) 

 

QUICK SORT 

 

 The divide-and-conquer approach can be used to arrive at an efficient 

sorting method different from merge sort. 

 

 In merge sort, the file a[1:n] was divided at its midpoint into sub arrays 

which were independently sorted & later merged. 

 

 In Quick sort, the division into 2 sub arrays is made so that the sorted 

sub arrays do not need to be merged later. 

 

 This is accomplished by rearranging the elements in a[1:n] such that 

a[I]<=a[j] for all I between 1 & n and all j between (m+1) & n for some 

m, 1<=m<=n. 

 

 Thus the elements in a[1:m] & a[m+1:n] can be independently sorted. 

 

 No merge is needed. This rearranging is referred to as partitioning. 

 

 Function partition of Algorithm accomplishes an in-place partitioning 

of the elements of a[m:p-1] 

 

 It is assumed that a[p]>=a[m] and that a[m] is the partitioning element. 

If m=1 & p-1=n, then a[n+1] must be defined and must be greater than 

or equal to all elements in a[1:n] 
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 The assumption that a[m] is the partition element is merely for 

convenience, other choices for the partitioning element than the first 

item in the set are better in practice. 

 

 The function interchange (a,I,j) exchanges a[I] with a[j]. 

 

Algorithm: Partition the array a[m:p-1] about a[m] 

 

1. Algorithm Partition(a,m,p)  

2. //within a[m],a[m+1],…..,a[p-1] the elements 

3. // are rearranged in such a manner that if 

4. //initially t=a[m],then after completion  

5. //a[q]=t for some q between m and 

6. //p-1,a[k]<=t for m<=k<q, and  

7. //a[k]>=t for  q<k<p. q is returned  

8. //Set a[p]=infinite. 

9. { 

10. v=a[m];I=m;j=p; 

11. repeat 

12. { 
13.     repeat 

14.          I=I+1; 

15.     until(a[I]>=v); 

16.     repeat 

17.         j=j-1; 

18.     until(a[j]<=v); 

19.     if (I<j) then Interchange(a,i.j); 

20. }until(I>=j); 

21.     a[m]=a[j]; a[j]=v; 

22.     retun j; 

23. } 
  

1. Algorithm Interchange(a,I,j) 

2. //Exchange a[I] with a[j] 

3. { 

4.     p=a[I]; 

5.    a[I]=a[j]; 

6.    a[j]=p; 

7. } 

 

Algorithm: Sorting by Partitioning  

 

1. Algorithm Quicksort(p,q) 

2. //Sort the elements a[p],….a[q] which resides 

3. //is the global array a[1:n] into ascending 

4. //order; a[n+1] is considered to be defined  

5. // and must be >= all the elements in a[1:n] 

6. { 

7. if(p<q) then // If there are more than one element 

8. { 

9. // divide p into 2 subproblems 

10. j= Partition(a,p,q+1); 
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11. //’j’ is the position of the partitioning element. 

12. //solve the subproblems. 

13. Quicksort(p,j-1); 

14. Quicksort(j+1,q); 

15. //There is no need for combining solution. 

16. } 
17. } 
 

Input: Unsorted list of elements 

Output: Sorted list of elements 

Example: 

Consider the list  

 

   65 45 50 55 85 60 80 75 70 ∞ 

Pivot & I                                                                         j 

 

65 70 75 80 85 60 55 50 45 ∞ 

Pivot   I                                                                 j 

                                                                

Since i<J, swap a[i] and a[j] i.e 70 and 45, 

65 45 75 80 85 60 55 50 70 ∞ 

Pivot            I                                               j     

 

Since i<J, swap a[i] and a[j] i.e 75 and 50 

65 45 50 80 85 60 55 75 70 ∞ 

Pivot                      I                           j 

  

Since i<J, swap a[i] and a[j] i.e 80 and 55  

65 45 50 55 85 60 80 75 70 ∞ 

Pivot                                i        j                         

 

Since i<J, swap a[i] and a[j] i.e 85 and 60 

65 45 50 55 60 85 80 75 70 ∞ 

Pivot                                j         I                                  

 

Since i>j swap a[j] with pivot element i.e., 60 and 65 and now partition occurs 

60 45 50 55 65 85 80 75 70 ∞ 

 

List is divided into three sublists: 

List1: 60 45 50 55 (Elements less than pivot) 

List2: 65         (Elements equal to pivot) 

List3: 85 80 75 70 (Elements greater than pivot) 

QuickSort is again applied for List1 and List2. 

Average Time Complexity of Quick Sort: 

 

Let the average case value be TA(n). 

Under the assumptions, the partitioning element v has an equal probability of 

being the ith smallest element, 1≤i≤p-m in a[m:p-1]. Hence the two subarrays 

remaining to be sorted are a[m:j] and a[j+1:p-1] with probability 1/(p-m), 

m≤j<p.  
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From this recurrence obtained is 

TA(n) = n+1+1/n ∑[TA(k-1) + TA(n-k)]                    ---------    1 
                                      1≤k≤n  
The no. of element comparisons required by Partition algorithm on its first 

call is n+1.  

Note TA(0)=TA(1)=0                                                          ---------    2 

 

Multiplying both sides of 1 by n, we get, 

 

nTA(n) = n(n+1)+ ∑[TA(k-1) + TA(n-k)] 
                          1≤k≤n 
=> nTA(n)= n(n+1)+2[TA(0)+TA(1)+  … +TA(n-1)]            ---------   3 

 

Repalacing n by n-1 in 3, we get, 

  

=> (n-1)TA(n-1)= n(n-1)+2[TA(0)+TA(1)+  … +TA(n-2)]        -------- 4 

 

Substracting 3 -4, we get, 

nTA(n) - (n-1)TA(n-1) = 2n + 2TA(n-1) 

=> TA(n)/(n+1) = TA(n-1)/n + 2/(n+1) 

 

By substitution method, 

TA(n)/(n+1) = TA(n-2)/n-1 + 2/n + 2/n+1 

                  = TA(n-3)/n-2 + 2/n-1 + 2/n + 2/n+1 

    : 

         = TA(1)/2 + 2 ∑3≤k≤n+1 1/k 

         = 2 ∑ 3≤k≤n+1 1/k 

Since, 

∑ 3≤k≤n+1 1/k ≤ ∫2 
n+1

 1/x dx = loge (n+1) - loge 2 

Therefore, TA(n) ≤ 2(n+1)[ loge (n+1) - loge 2 ] = O(n log n). 

 

STRASSEN’S MATRIX MULTIPLICAION 

 

 Let A and B be the two n*n Matrix. The product matrix C=AB is 

calculated by using the formula, 

 

C (i ,j )=   A(i,k) B(k,j) for all ‘i’ and  and j between 1 and n. 

 

 The time complexity for the matrix Multiplication is O(n
3

). 

 

 Divide and conquer method suggest another way to compute the 

product of n*n matrix. 

 

 We assume that N is a power of 2 .In the case N is not a power of 2, 

then enough rows and columns of zero can be added to both A and B. 

So that the resulting dimension are the powers of two. 

 

 If n=2 then the following formula as a computed using a matrix 

multiplication operation for the elements of A & B. 
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 If n>2,Then the elements are partitioned into sub matrix n/2*n/2..since 

‘n’ is a power of 2 these product can be recursively computed using the 

same formula .This  Algorithm will continue applying itself to smaller 

sub matrix until ‘N” become suitable small(n=2)  so that  the product is 

computed directly . 

 The formula are  

 

 

A11        A12           B11     B12            C11      C12                         

                     *       = 

A21        A21           B21     B22            C21     C22 

 

 

 

C11 = A11 * B11 + A12 * B21 

C12 = A11 * B12 + A12 * B22 

C21 = A21 * B11 + A22 * B21 

C22 = A21 * B12 + A22 * B22 

 

For EX:  

     2 2 2 2               1  1  1 1 

     4 * 4 =       2 2 2 2                  1  1  1 1 

              2 2 2 2       *      1 1  1 1 

              2 2 2 2                    1 1  1 1 

 

 

The Divide and conquer method 

 

 2  2      2  2           1  1     1   1                4  4     4   4 

      2  2      2  2           1  1     1   1        =      4  4     4   4 

                   2  2     2   2          1  1      1   1               4  4      4   4 

                   2  2     2   2          1  1      1   1               4  4      4   4 

 

 

 To compute AB using the equation we need to perform 8 

multiplication of n/2*n/2 matrix and 4 addition of n/2*n/2 matrix. 

 The time complexity for the above matrix Multiplication is O(n
3

). 

 

 The overall computing time T(n) of the resulting divide and conquer 

algorithm is given by the sequence. 

 

T(n)=     b                   n<=2 a &b are 

              8T(n/2)+cn2         n>2  constant 

 

That is T(n)=O(n3) 

 

 

Matrix multiplication are more expensive then the matrix addition .We can 

attempt to reformulate the equation for  Cij so as to have fewer multiplication 

and possibly more addition . 
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 Strassen has discovered a way to compute the Cij using only  7 

multiplication and 18 addition or subtraction. 

 

 

Strassen’s formula are  

 

P= (A11+A12)(B11+B22) 

Q= (A12+A22)B11 

R= A11(B12-B22) 

S= A22(B21-B11) 

T= (A11+A12)B22 

U= (A21-A11)(B11+B12) 

V= (A12-A22)(B21+B22) 

 

C11=P+S-T+V 

C12=R+t 

C21=Q+T 

C22=P+R-Q+V 

 

The resulting recurrence relation for T(n) is 

 

T(n)=     b         n≤2     a &b are 

              7T(n/2)+an2       n>2     constant 

 

By using substitution method, 

      T(n) = an2 [1 + 7/4 + (7/4)2 + … + (7/4)
k-1

] + 7
K

 T(1)   

              ≤ cn2 (7/4) log2 n + 7 
log2 n 

 , c a constant 

              = cn 
log2 4 + log2 7 – log2 4

 + n log2 7 

     = O(n log2 7) ≈ O(n 
2.81

). 

 

 

 

***** 
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