
Software Engineering (R13)

1

UNIT-1

Introduction to Software Engineering

• Software crisis started in the mid of the late 1960s and the early 1970s.
• The importance of software, software industry, and software users has evolved rapidly.
• The fields of computing have become complex and diverse in the modern information society.
• The main focus of practitioners from the computing outset was to provide solutions to the complexity

barriers of producing software, setting up the software industry, and escalating the number of software
users.

• The dependency of business organizations on software and technology has increased.
• Small-scale and large-scale business organizations have automated their business processes for increased

ease and effectiveness.
• The dynamic nature of changing software technology forces the adoption of software construction and

maintenance processes according to the suitability of the application.
• Software companies are moving toward component-based development, where components are assembled

rather than developed from the scratch
• The mobile nature of software allows changes in requirements as and when required but changing

requirements during development needs a systematic process to incorporate the changes into software
work products.

• Along with development and maintenance, software project management also plays an important role in the
project success.

• Apart from the process of development, maintenance, management, and planning, some software
engineering approaches aim to improve the process itself.

• The ultimate goal of software practitioners is to produce faster, better, and cost-effective products
Software

• Software is a collection of computer programs that when executed together with data provide desired
outcomes.

• A computer program is a set of instructions written in a programming language.
• Programs run within specified constraints and environment, with defined rules of execution.
• Each standard program has a certain procedure for its execution and operation.
• Data play an important role in program execution for providing useful information in some form.
• The documentation is important in understanding the software code, design, constraints, customer needs,

and specification for further maintenance.
• IEEE Defines “Software is a collection of computer programs, together with data, procedure, rules, and

associated documentation, which operate in a specified environment with certain constraints to provide the
desired outcomes”.

• Software concentrates more on quality issues, such as interoperability, portability, usability, reliability, and
robustness; and it is sometimes referred to as industrial quality software

Software Engineering (R13)

2

Software characteristics

• Software has logical properties rather than physical.
Software is an intangible product and has no physical properties. It has no physical shape, no volume, no
color and no odor. Software logically consists of several programs connected through well defined logical
interfaces. These interfaces are implemented through programming languages.

• Software is mobile to change.
Software is too much flexible product that it can be easily changed. Each part of software can be changed in
a way similar to that for other products but it cannot be replaced because it has logical meaning.

• Software is produced in an engineering manner rather than in classical sense.
The Engineering mechanism provides some organized activities or tasks with their defined approaches for
software production. Some activities are Feasibility study, Analysis, Design, Coding, Testing etc.

• Software becomes obsolete but does not wear out or die.
Software becomes obsolete due to increasing requirements of the users and rapidly changing technologies.
Software products do not wear out as they do not have physical properties. The defects and failures in
software can be corrected and maintained.

• Software has a certain operating environment, end user, and customer.
Software products run in a specified environment with some defined constraints. Some are platform specific
and others are platform independent. End users are three types: top level, middle level and low level
employees in an organization.

• Software development is a labor-intensive task
Some parts in the software can be reused but it still requires logical thinking and engineering paradigm.

Software Classifications:
Software can either be Generic or customized.

• Generic software products are developed for general purpose, regardless of the type of business.
• Customized software products are developed to satisfy the need of a particular customer in an organization.

Generic and Customized software products can again be divided into several categories depending on the type of
customer, business, technology and computer support.

• System software is the computer software that is designed to operate the computer hardware and manage
the functioning of the application software running on it. System software execute programs, transfers data
between devices and controls, and operates the computer hardware. E.g., device drivers, boot program,
operating systems, servers, utilities, and so on.

• Application software is designed to accomplish certain specific needs of the end user. It uses the capabilities
of system software for a dedicated tasks. Eg., video editing software, word processing software, database
software, and simulation software are some examples of application software etc.

• Programming software is the class of System software that assists programmers in writing computer
programs using different programming languages in a convenient manner. Eg. Compilers, Interpreters, Text
Editors, Debuggers, Linkers, loaders etc.

• Artificial Intelligence (AI) software is made to think like human beings and it is useful in solving complex
problems automatically. AI software uses techniques or algorithms for writing programs to represent and
manipulate knowledge. Eg: Game playing, Speech recognition, computer vision, robotics, expert systems and
understanding natural language.

• Embedded software is a type of software that is built into hardware systems. Embedded software is used to
control, monitor, or assist the operation of equipment, machinery, or plant. Many of the advanced functions
that are common in modern devices are used in daily life, such as in washing machines, cars, mobiles, etc.
There are certain characteristics of embedded systems, such as naive , timeliness, concurrency, liveness,
reactivity, and heterogeneity. Controllers, real time operating systems, communication protocols are some
examples of embedded software.

• Engineering/ Scientific software : Engineering problems and Quantitative analysis are carried out using
automated tools. Scientific software is typically used to solve mathematical functions and calculations. Eg.
CAD, CAM software, Embedded System Software, Math calculation software and Modelling and simulation
software etc.

Software Engineering (R13)

3

• Web Software has evolved from simple web site to search engines to web computing. Web softwares can be
used in academics, business, information management etc. Eg: Web 2.0, HTML, PHP, search engines etc.

• Product-line software is a set of software intensive systems that share a common, managed set of features
to satisfy the specific needs of a particular market segment or mission. Product line software improves time
to market, productivity, quality, and other business drivers. At the same time, it reduces product cost. It can
also enable rapid market entry and flexible response, and provide a capability for mass customization. Some
common applications are multimedia, database software, word processing software, etc. Reuse-based
Software Engineering Business (RSEB) promotes product-line software.

Engineering Discipline:

• Engineering is a disciplined approach with some organized steps in a managed way to construction,
operation, and maintenance of software.

• Engineering of a product goes through a series of stages, i.e., planning, analysis and specification, design,
construction, testing, documentation, and deployment.

• The disciplined approach may lead to better results.
• The general stages for engineering the software include feasibility study and preliminary investigation,

requirement analysis and specification, design, coding, testing, deployment, operation, and maintenance.

Software Crisis:
• Software crisis, the symptoms of the problem of engineering the software, began to enforce the

practitioners to look into more disciplined software engineering approaches for software development.
• The software industry has progressed from the desktop PC to network-based computing to service-oriented

computing nowadays.
• The development of programs and software has become complex with increasing requirements of users,

technological advancements, and computer awareness among people.
• Software crisis symptoms

• complexity,
• hardware versus software cost,
• Lateness and costliness,
• poor quality,
• unmanageable nature,
• immaturity,
• lack of planning and management practices,
• Change, maintenance and migration,
• etc.

Software Engineering (R13)

4

What is Software Engineering?
• The solution to these software crises is to introduce systematic software engineering practices for systematic

software development, maintenance, operation, retirement, planning, and management of software.
• The systematic means the methodological and pragmatic way of development, operation and maintenance

of software.
• Systematic development of software helps to understand problems and satisfy the client needs.
• Development means the construction of software through a series of activities, i.e., analysis, design, coding,

testing, and deployment.
• Maintenance is required due to the existence of errors and faults, modification of existing features, addition

of new features, and technological advancements.
• Operational software must be correct, efficient, understandable, and usable for work at the client site.
• IEEE defines

• The systematic approach to the development, operation, maintenance, and retirement of software.

Evolution of Software Engineering Methodologies:

• A software engineering methodology is a set of procedures followed from the beginning to the completion of
the development process.

• Software engineering methodologies have evolved with increasing complexities in programming and
advancements in programming technologies.

• The most popular software methodologies are:
– Exploratory methodology
– Structure-oriented methodology
– Data-structure-oriented methodology
– Object-oriented methodology
– Component-based development methodology

Software Engineering (R13)

5

Exploratory Methodology

• Exploratory style of software engineering is a methodology that applies to the development of programs
whose requirements are initially unclear.

• It involves experimentation and exploring the programs through step-by-step programming.
• Exploratory style is sufficient to develop software to test research hypothesis but it is unable to meet

reliability, extensibility, and maintainability goals.
• In exploratory style, errors are detected only during the final product testing.
• Maintenance is very difficult and costly because of the lack of documentation and multiplicity of changes in

the initial proposal.
• Exploratory style uses unstructured programming or design heuristics for program writing, where the focus

is given on global data items.

Structure-Oriented Methodology

• Structured methodology focuses on procedural approach, which concentrates on developing functions or
procedures,

• It has three basic elements, Sequence, Selection, Iteration.
Sequence : The order in which instructions are executed in the sequence of programming.
Selection: If else conditional statements and other forms of selection reacts to choices.
Iteration: The use of loops and other form of repetitive sets of instructions forms the last building block of
procedural programming.

• Structure-oriented methodology uses a variety of notations, such as Data Flow Diagrams (DFD), data
dictionary, Control Flow Graphs (CFG), Entity Relationship (ER) diagrams, etc., to design the solution of the
software.

• Structure-oriented methodology is suitable for all types of projects. Procedural programming languages (for
example, C, COBOL, BASIC, FORTRAN, etc.) are actually very powerful and easy to understand.

• Structure-oriented approach is preferred in scripts and embedded systems with small memory
requirements and high speed.

Data-Structure-Oriented Methodology

• Data-structure-oriented methodology concentrates more on designing data structures rather than on
procedures and control.

• Jackson Structured Design (JSD) methodology developed by Michael Jackson in 1970 is a famous data-
structure-oriented methodology that expresses how functionality fits in with the real world.

• JSD is a useful methodology for concurrent software, real time software, microcode, and for programming
parallel computers because JSD emphasizes actions more and attributes less.

• Though JSD is good for shaping real world scenario, it is complex and difficult to understand.

Object-Oriented Methodology

• Object-oriented methodology emphasizes the use of data rather than functions.
• Data and procedures are built around these objects. The real world entities are treated as objects. The

objects having characteristics in common are grouped into classes.
• An object involves properties and methods

Properities: These are the characteristics which define how an object behaves.
Methods : These are actually blocks of instructions that can be executed by an object itself, and each object
has its own set of methods.

• Object-oriented methodology has three important concepts: modularity, abstraction, and encapsulation.
• Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD) techniques are used in object-oriented

methodology.

Software Engineering (R13)

6

• OOA is used to understand the requirements by identifying objects and classes, their relationships to other
classes, their attributes, and the inheritance relationships among them.

• OOD creates object models and maps the real world situation into the software structure.
• Object-oriented methodology is the latest and the most widely-used method for the development of

applications in a variety of domains.

Component-Based Development Methodology:

• Component-Based Development (CBD) is a significant methodology for communication among different
stakeholders, and for large-scale reuse.

• CBD is a system analysis and design methodology that has evolved from the object-oriented methodology.
• It is largely based on its focus on reuse.
• Its proponents promise faster time to market, cost reduction, better quality, flexibility, and scalability. It

places large, independently-packaged, reusable components at the core of software development.

Software Engineering Challenges

• Problem Understanding The lack of communication among software engineers and customers causes
problems for the software engineers in clearly understanding the customer needs. Therefore it becomes
difficult to find requirements from different perspectives and customers

• Quality and Productivity Software Engineering practices mainly emphasize providing quality products in a
small cycle time. The productivity and quality of software depends on several factors such as programmers
ability, type of technology, level of experience, nature of projects and their complexity, available time etc.

• Cycle Time and Cost The cost of software product is generally the cost of the hardware, software and
manpower resources. It also depends on project size and nature. There are some other factors that can
effect the time to market and the cost, such as level of technology, application experience and availability of
required resource. Higher the cycle time higher the product cost.

• Reliability is the successful operation of software with in the specified environment and duration under
certain conditions. Defect detection and prevention is the prerequisite to high reliability in the product.
Software becomes unreliable due to logical errors in the programs of the software. Project complexity is the
major cause of software unreliability.

• Change and Maintenance They occur if there is any change in the business operation, errors in the software,
or addition of some new features. They are not easy tasks. The challenge is to accommodate changes under
controlled cost and reliability. Due to repeated maintenance and change, software deteriorates its
operational life and quality.

• Usability and Reusability: Usability means the ease of use of a product in terms of efficiency, effectiveness
and customer satisfaction. Thus the adaption of usability engineering approaches into software
development has now become the important consideration for software engineers and usability engineers.
Reuse of the existing software components and their development has become an institutional business in
the modern software business scenario. The analysis of domain knowledge, development of reusable library,
and integration of reusable components in software development are some important issues in reuse-based
development.

• Repeatability and Process Maturity Repeatability maintains the consistency of product quality and
productivity. Repeatability can help to plan project schedule, fix deadlines for product delivery, manage
configuration, and identify locations of bug occurrences. Repeatability promotes process maturity. The key
challenge is to adopt the systematic and mature software engineering process for development and
maintenance. A mature software process produces quality products and improves software productivity.

• Estimation and Planning Most of the projects fail due to under estimation of budget and time to complete
the project. The effectiveness of the project plan depends on the accuracy of the estimation and
understanding of the problem. The use of effective project planning and estimation technique is an
important challenge for the practitioners.

Software Engineering Principles

• Focus on customers’ problems, needs, priorities, and expectations: The solution depends up on how
accurately the developer specifies the customer problems. Appropriate methods such as interviews,
questionaries, literatures, internet resources are used to elicit customer needs. Sometimes customers have

Software Engineering (R13)

7

certain priority of requirements such as some projects may be required on time. While others may be
delayed.

• Choose appropriate process model: There are several process models such as waterfall model, prototyping
model, spiral model, rational unified process(RUP) process model etc.,The selection of process model
depends on anticipation of changes, risk tolerance, application domain, customer involvement and the level
of understanding requirements .

• Decomposition and modularity: These are helpful to simplify design and development process. Modularity
deals with hierarchical decomposition. Decomposition is the process of partitioning a subject system in to
smaller components and integrating them either in Top-down or a bottom-up manner. A system can be
made effective with high cohesion and low coupling. An effective modular system makes maintenance task
easier, improves reliability and eases design issues.

• Abstraction: It separates behaviors of software modules from their implementation. It is helpful in extracting
the essential properties without worrying about unnecessary details.

• Encapsulation: Encapsulation provides only the required details to interface with other modules.
Encapsulation or information hiding is characterized by secreting the design and implementation decisions in
one place from the rest of the program. It makes testing and maintenance tasks easier.

• Incremental development: It can be applied to situations where requirements are unclear. After developing
an initial subset of the application feedback is gathered from the customers. Suggestions are incorporated to
improve the system.

• Understandability: Abstraction in program design makes the program understandable. Therefore
representing a system in the abstract form should be done before further development.

• Consistency and completeness: Consistency can help one to perform the specified task in any easy manner,
which much effort. Completeness ensures that all the essential details which are explicit and necessary in
the project are included.

• Generality: Software companies attempt to use reusable components which are designed in general
manner. Generic components are easily customized according to the customer needs and hence faster,
better and cheaper products are produced.

• Perform verification and validation to maintain quality: At the end of each phase verification and validation
can ensure the quality of the product and satisfy customer needs. Testing tools can be used to perform
verification and validation of the work products.

• Follow-up the scope statement, deadlines, and early product delivery: The project managers must review
the scope statement and participate in each review meeting to know the progress and status of the scope
statement. The schedule of each subtask should be designed and monitored to deliver the product with in
the stipulated deadlines.

• Design for change: Emphasis on flexibility and changeability in design is crucial for evolution of software
design.

• Follow disciplined and mature process: Software organizations achieve process maturity by following the
policies, standards and organizational structures. The matured software organization possesses and
organization-wide ability of managing the software development and maintenance process.

• Take responsibility and commit: Team members should perform their duties once they have committed to
accomplishing the assigned job within stipulated time, budget and scope.

• Better planning and management rather than technology: Good planning and management motivate and
attract people to perform their best. Technology cannot counter balance poor management.

Software Process

• A software process is a coherent set of activities, procedures, policies, organizational structures, constraints,
technologies, and artifacts that are needed to develop software products.

• The main goal of a software process is to produce quality software with defined constraints.
• A software process is a set of ordered activities carried out to produce a software product.
• An activity is a specified task performed to achieve the process objectives.
• Each activity of software process involves tools and technologies, procedures, and artifacts.
• A software process is a complex entity in which each activity is executed with the supporting tools and

techniques.

Software Engineering (R13)

8

• A software project is an entity, with defined start and end, in which a software process is being used.
• A successful project is the one that conforms with the project constraints (cost, schedule, and quality

criteria).
• A product is the outcome of a software project produced through processes.
• A project can have more than one product called work products. A work product is the intermediate

outcome of processes.
• Software process, project, and products are interrelated to each other for the development of software.

Software Process Model:

• A software process model is a generic representation of a software process instantiated for each specific
project.

• A process model is a set of activities that have to be accomplished to achieve the process objectives.
• A process model can be made practical by executing the concept, technologies, implementation

environment, process constraints, and so on.
• These models may be related to development, management, improvement, and maintenance.
• Process models specify the activities, work products, relationships, milestones, etc.

Generic representation of process model: It has three phases.

• Definition phase concentrates on understanding the problem and planning for the process model.
– The activities may include problem formulation, problem analysis, system engineering, and project

planning for the process.

Software Engineering (R13)

9

• Development phase focuses on determining the solution of the problem with the help of the umbrella
activities.

– The main activities of this phase are designing the architecture and algorithms of the system, writing
codes, and testing the software.

• Implementation phase: Deployment, change management, defect removal, and maintenance activities are
performed in this phase.

• The umbrella activities are responsible for ensuring the proper execution of definition, development, and
implementation phases.

– The umbrella activities are project management, quality assurance, configuration management, risk
management, work products preparation and deployment, and process improvement.

Elements of Software Process
• Artifacts are tangible work products produced during the development of software.
• Activity specifies the tasks to be carried out implicitly or explicitly.
• Constraint refers to the criteria or condition that must be met or possessed by a software product
• People are persons or stakeholders who are directly or indirectly involved in the process.
• Tools and Technology provides technical support to the methods or techniques to be used for performing

the activities.
• Method or Technique specifies the way to perform an activity using tools and technology to accomplish the

activity.
• Relationship specifies the link among various activities or entities. It assists in the execution of sequence of

activities.
• Organizational structure specifies the team of people that should be coordinated and managed during

software development.

Characteristics of Software Process

• Understandability: Software process must be explicitly defined i.e. it should be comprehensible for its users.
The process specification must be easy to understand, easy to learn and easy to apply.

• Effectiveness: A process must ensure required deliverables and customer expectations and it must follow
the specified procedure. Effectiveness of a process depends on certain performance indicators such as
programmers skills, fund availability, quality of work products etc.

• Predictability: It is about forecasting the outcomes before the completion of process. It is the basis through
which the cost, quality and resource requirements are specified in a project. A predictable process is
referred to as being under statistical control process. Under statistical control a process can produce
outcomes as per the excepted input values.

• Maintainability: It is the flexibility to maintain software through change requirements defect detection and
correction, adopting it in new operating environments. Reduction in maintenance definitely reduces project
cost.

• Reliability: It refers to the capability of performing the intended tasks. Unreliability of a process causes
product failures and unreliable processes waste time and money.

• Changeability: It is the acceptability of changes done in software. Changeability is classified has robustness,
modifiability and scalability. Robustness means that a process does not change the product quality due to its
internal and external changes. Scalability is the ability to change the attributes so that a process can be used
in smaller to larger software development. Modifiability is the ability of adoptability if change occurrence.

• Improvement: It concentrates on identifying and prototyping the possibilities (strengths and weaknesses)
for improvements in process itself. There are various process improvement standards. Such as Quality
improvement paradigm (QIP), capability maturity model in regression (CMM).

• Monitoring and Tracking: Monitoring and Tracking a process in a project can help to determine
predictability and productivity.

• Rapidity: It is the speed of process to produce the products under specifications for its timely completion by
maintaining quality of product

• Repeatability: A process is said to be repeatable if it is able to produce an artifact number of times without
the los s of quality attributes. There may be variation s in the operation, cost and time but the quality of
artifacts will be the same.

Software Engineering (R13)

10

There are various other desirable features of a software process such as Quality, adoptability, acceptability,
visibility, supportability and so on.

Process Classification

• Software processes may be classified as
• product development process
• project management process
• change management process
• process improvements
• Quality management process

Product Development Process

• Product development processes focus mainly on producing software products.
• These processes involve various techniques, tools, and technologies for developing software.
• Such processes include various activities like conceptualization, designing, coding, testing, and

implementation of a new or existing system.
• There are certain work products of these activities, such as software requirements specifications

(SRS), design models, source codes, test reports, and documentation.
• The most widely used software development process models are the waterfall model, prototyping

model, spiral model, agile model, RUP, and so on models.
Project Management Process

• Project management processes concentrate on planning and managing projects in order to achieve
the project objectives.

• The goal of these processes is to carry out the development activities within time, budget, and
resources.

• There are various project management processes, which are scope, budget, schedule, quality,
information, team, risk, and contracts.

• Initiating, planning, coordinating, controlling, executing, and terminating are the main activities of a
general project management process.

Process Improvement Process
• These processes are involved in improving the process itself.
• The ultimate goal of improvement in a process is to enable the organization to produce more quality

products.
• Process improvement is an incremental improvement of process, which is used for software

development.
• There exist various process improvement process models, such as CMMI, QIP, continuous quality

improvement (CQI), total quality management (TQM), Six Sigma, and so on.
• All these process models provide improvement guidelines and standards for improving software

processes.
Configuration Management Process

• Changes may occur in projects, processes, and products as these entities are evolutionary in nature.
• Changes may arise due to either change in the customer requirements or discrepancies in the work
products or procedures from developer’s side.

• There is a need for a lot of efforts and systematic procedures for performing these changes.
• Configuration management includes various activities for performing changes, such as identification

of configuration items, devising mechanisms for performing changes, controlling changes, and
tracking the status of those changes.

Quality Management Process
• A quality management process provides metrics, feedback, and guidelines for the assurance of

product quality.
• Quality system ensures that a proper business system is working with the help of various monitors

and controls.
• Software quality organization gives information and expertise to development and management

process for quality production.

Software Engineering (R13)

11

• The main activities of software quality groups are verification and validation, acceptance testing,
measurement and metrics, process consulting, and so on.

• ISO 9000 is a framework that provides certain guidelines for the quality system.

Phased Development Life Cycle

• Product development process is carried out as a series of certain activities for software production. Each
activity in the process is also referred to as a phase.

• General activities include feasibility study, analysis, design, coding, testing, implementation, and
maintenance.

• Collectively, these activities are called the software development life cycle (SDLC) or simply software life cycle
and each of these activities are called life cycle phase.

• The SDLC provides a framework that encompasses the activities performed to develop and maintain
software.

• Some of these models are waterfall, prototyping, spiral, incremental, agile process, RUP process model, and
so on.

Figure 2.3: Software Development Life Cycle (SDLC) activities

• Project Initiation

– The aim of project initiation is to study the existing system; determine the feasibility of a new
system; and define the scope, key elements, and a plan for the successful completion of the project.

– Project initiation involves preliminary investigation, feasibility study, and a project plan.
– Preliminary investigation (PI) is the initial step that gives a clear picture of what actually the physical

system is.
– PI goes through problem identification, background of the physical system, and the system proposal

for a candidate system.
– The purpose of the feasibility study is to determine whether the implementation of the proposed

system will support the mission and objectives of the organization.
– Feasibility study ensures that the candidate system is able to satisfy the user needs; promotes

operational, effective use of resources; and is cost effective.
– There are various types of feasibility study performed, such as technical, economical, operational,

and so on
– Feasibility report is prepared and submitted to the top-level management. A positive report leads to

project initiation.
– A detailed project plan is actually prepared after knowing the requirements

• Requirements Analysis

Project
initiation

Analysis

Design

Coding Testing

Deployment

Maintenance

Software Engineering (R13)

12

– Requirement analysis is the process of collecting factual data, understanding the processes involved,
defining the problem, and providing a document for further software development.

– Requirement analysis is a systematic approach to elicit, organize, and document the requirements of
a system.

– The requirement analysis phase consists of three main activities: requirements elicitation,
requirements specification, and requirements verification and validation.

• Software Design
– Software design focuses on the solution domain of the project on the basis of the requirement

document prepared during the analysis phase.
– The goal of the design phase is to transform the collected requirements into a structure that is

suitable for implementation in programming languages.
– The design phase has two aspects: physical design and logical design.
– Physical design concentrates on identifying the different modules or components in a system that

interact with each other to create the architecture of the system.
– In logical design, the internal logic of a module or component is described in pseudo code or in an

algorithmic manner.
• Coding

– The coding phase is concerned with the development of the source code that will implement the
design.

– This code is written in a formal language called a programming language, such as assembly language,
C++, Java, etc.

– Good coding efforts can reduce testing and maintenance tasks.
– Programs must be modular so that they can help in rapid development, maintenance, and

enhancements of the system.
– The programs written during the coding phase must be easy to read and understand.

• Testing
– Before the deployment of the software, testing is performed to remove the defects in the developed

system
– Testing covers various errors at the requirements, design, and coding phases.
– Testing is performed at different levels: unit testing, integration testing, system testing, and

acceptance testing.
– Various special tests are also performed to check the functionality of the system, such as recovery

testing, performance testing, load testing, security testing, and so on.
– Testing is an important technique of software quality assurance.

• Deployment
– The purpose of software deployment is to make the software available for operational use.
– It includes various activities to make a system available for assembly and to transfer it to the

customer site.
– Required resources are procured to operate at the customer site and important information is

collected for the deployment process.
– During deployment, all the programs files are loaded onto user’s computer. After installation of all

the modules of the system, training of the user starts.
– Documentation is prepared in the form of a user manual or system operation process which ensures

the continuity of the system.
• Maintenance

– The maintenance phase comes after the software product is released and put into operation
through the deployment process.

– Software maintenance is performed to adapt to changes in a new environment, correct bugs, and
enhance the performance by adding new features.

– The maintenance activities can be classified as adaptive (changes in the software environment),
perfective (new user requirements), corrective (fixing errors), preventive (prevent problems in the
future).

– The software will age in the near future and enter the retirement stage.
– In extreme cases, the software will be reengineered onto a different platform.

Software Engineering (R13)

13

Software Development Process Models:

¶ Classical waterfall model

¶ Iterative waterfall model

¶ Prototyping model

¶ Incremental model

¶ Spiral model

¶ Agile process model

¶ RUP process model
Classical Waterfall Model

¶ The waterfall model is a classical development process model proposed by R. W. Royce in 1970.

¶ In this model, software development proceeds through an orderly sequence of transitions from one phase to
the next in order (like a waterfall).

¶ It is the simplest and the most widely used model in development.

¶ This model produces standard outputs at the end of every phase, which is called work products.

¶ This model was enhanced with a feedback process, which is referred to as an iterative model.

Advantages

– The main advantage of the waterfall model is that it is easy to understand and implement.
– Due to the straightforward organization of phases, it is fit for other engineering process models,

such as civil, mechanical, etc.
– It is a document-driven process that can help new people to transfer knowledge.
– Milestones and deliverables at each stage can be used to monitor the progress of the project.
– This model works well on large and mature products. It is not well suited for small teams and

projects.
– Where the requirements are well understood and the developers are confident, the waterfall model

works well.
Disadvantages

– The model assumes that the requirements will not change during the project. Sometimes, it is
unrealistic to expect accurate requirements early in a project.

– It is very difficult to estimate the time and cost in the waterfall model.
– There may be difference of opinions among the specialists because there are specialized teams for

each individual phase.
– The people mentally ready to work in a phase will have to wait until its previous phase is completed.
– Due to so much emphasis on documentation, sometimes people may become irritated.
– Fixing the software and hardware technology early may create problems for larger projects.
– There is no inherent risk management policy in this model.
– This model works well on large and mature products.

Software Engineering (R13)

14

– It is not well suited for small teams and projects.

Iterative Waterfall Model

• The iterative waterfall model is an extended waterfall model with backtracking at each phase to its
preceding phases.

• The life cycle phases are organized similar to those in the classical waterfall model. The only difference is
backtracking of phases on detection of errors at any stage.

• The errors can come at any stage of the development life cycle.
• Once a defect is detected there is a need to go back to the phase where it was introduced.
• On defect detection at the source, some of the work performed during that phase and all the subsequent

phases may be revised.
• On error detection at any phase, it may be required that the preceding and succeeding phases be changed.
• Detecting and removing defects earlier in the process of software development is called phase containment

of errors.
• Removing defects in early phases of development reduces testing and maintenance efforts.
• The iterative waterfall model is the most widely used model and it is simple to apply it in projects.
• Still it is a document-driven model.

• It is very difficult to manage changes between the phases.
• There is a possibility of blocking states, which can slow down the productivity and efficiency of the process.
• Risks are not addressed in this model.
• This model is most suitable for simple projects where the work products are well defined and their

functioning is understood.

Prototyping Model

• Prototyping is an alternative in which partial working software (i.e. a prototype) is initially developed instead
of developing the final product.

• IEEE defines prototyping as “a type of development in which emphasis is placed on developing prototypes
early in the development process to permit early feedback and analysis in support of the development
process.”

• Prototype development is a toy implementation, which provides a chance to the customer to give feedback
for final product development.

• A prototype provides limited functionalities, low reliability, and insufficient performance as compared to the
actual software.

• A prototype helps customer to understand the requirements that can further reduce the possibility of
requirement changes.

• The prototype model is well suited for projects where requirements are difficult to understand and the
customer is not confident in illustrating and clarifying the requirements.

Software Engineering (R13)

15

• It fits best where the customer risks are related to the changing requirements (software and hardware
requirements) of the projects.

• But this model requires exclusive involvement of the customer, which is not always possible. Sometimes bad
design decisions during prototype development may propagate to the real product

Incremental Model

• The incremental model is an intuitive approach to the waterfall model with fewer restrictions.
• The activities are performed in the same order as in the waterfall model, but they are conducted in several

iterations.
• Each iteration releases a fully functional work product by providing additional functionalities in successive

releases.
• The final iteration releases the complete product

• The requirements are functionally divided and prioritized according to the needs of the customers.
• A blueprint of the product based on the prioritized requirements is also designed, which describes

dependency of tasks on each other.
• A project control list is prepared, describing the order of the tasks to be performed and outcomes of the task

to be released.
• Each task in the project control list is treated as a mini project. Each item in the list is a module, which is to

be developed in increments.
• Each task is removed from the project control list and developed using the waterfall model in a sequential

manner.

Software Engineering (R13)

16

• Each new release is integrated with the existing increments to provide enhanced functionality with each
delivered increment.

• The length of iterations is generally kept very short and fine. For example, an iteration can be a duration of 6
weeks, 10 weeks, etc.

• The number of iterations depends upon the nature of the project and the features it supports.
• The main advantage of the incremental model is the early production of working software during the

software life cycle.
• Because each module is tested thoroughly, there is little possibility to change scope and requirements in the

final software.
• Due to incremental development, testing and debugging of each module become easier.
• This model is also helpful in handling risks (technical, requirements, usability, etc.) because risky modules are

identified and handled in a separate iteration.
• This model is suitable for larger projects where requirements are somewhat clear and which need phase-

wise implementation.
• Mostly this model is used in web applications, object-oriented development projects, and product-based

companies.
• Also, it is widely used by many commercial software companies and system vendors.
• Each phase of an iteration is rigid and does not overlap another. Therefore, coordination between iterations

is required for better quality products.
• Sometimes, an initial upfront cost is required for parallel development of various modules.

Spiral Model

• The spiral model is an iterative software development approach, which was proposed by Boehm in 1988.
• In this model, activities are organized as a spiral with many loops.
• Each loop in the spiral represents a phase of software development.
• The exact number of loops in the spiral is not fixed.
• The main focus of this model is identification and resolution of potential risks (product risks, project risks,

and process risks).

• Each loop in the spiral is split into four quadrants. Each of these four quadrants is used for the development
of each phase.

– Determine objectives, alternatives, and constraints.
– Evaluate alternatives; identify and resolve risks.
– Develop, verify the next level product.
– Plan for the next phase.

• The redial dimension represents the cumulative cost incurred so far for the development of phases in a
project.

• The angular dimension indicates the progress made so far in completing each cycle.
• It is considered a Meta model because it incorporates the features of all other models, which are the

waterfall, prototyping, incremental, simulation, and performance models.
• The performance of prototype development is evaluated using benchmarking tools, simulation models, and

customer feedback.

Software Engineering (R13)

17

Agile Process Model

• The agile process model is a group of software development methodologies based on iterative and
incremental development.

• In February 2001, 17 software developers published the manifesto of agile software development to define
the approach.

• Some of the manifesto's authors formed the agile alliance. The manifesto of agile software development is
as follows:

• “We are uncovering better ways of developing software by doing it and helping others do it.”
This work focuses to value the following:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
• Agile software development methods

– extreme programming (XP),
– Scrum,
– dynamic systems development method (DSDM),
– adaptive software development (ASD),
– Crystal, feature-driven development (FDD),
– test-driven development (TDD),
– pair programming,
– refactoring,
– agile modeling,
– Internet speed development, and so on

¶ Extreme Programming (XP) (initiated by Kent Beck)
– XP is a system of practices that is being evolved by a community of software developers to address

the problems of quickly delivering quality software.
– Extreme programming process is an iterative development process which consists of planning,

design, coding, and test phases.
– The XP process is the most suitable practice for dynamically changing requirements, projects having

risks, small developer groups, and non-fixed scope or price contract.
– However, XP is difficult to get representative of customers, who can sit with the team and work with

them daily.

Software Engineering (R13)

18

– Also, there is a problem of architectural design because the incremental style of development means
that inappropriate architectural decisions are made at an early stage of the process.

– The XP process is the most suitable practice for dynamically changing requirements, projects having
risks, small developer groups, and non-fixed scope or price contract.

– This practice produces good quality products for the regular involvement of customers.
– However , XP is difficult to get representative of customers, who can sit with the team and work with

them daily.
– Also, there is a problem of architectural design because the incremental style of development means

that inappropriate architectural decisions are made at an early stage of the process.

Scrum:

• Benefits and drawbacks to Scrum process
– It is a completely developed and tested feature in short iterations.
– It is a simple process with clearly defined rules. It increases productivity and the self-organizing team

member carries a lot of responsibility.
– It improves communication and combination with extreme programming.
– It has no written documentation and sometimes violation of responsibilities.

RUP Process Model

• The Rational Unified Process (RUP) is a use-case driven, architecture-centric, iterative, and incremental
process model.

• The RUP focuses on creating and maintaining models rather than documentation.
• It is derived from Unified Modeling Language (UML), which is an industry-standard language that helps to

clearly communicate requirements, architectures, and designs.
• The RUP is supported by tools which automate most of the activities of the process.
• The RUP divides the development cycle into four consecutive phases; namely, inception, elaboration,

construction, and transition.

Software Engineering (R13)

19

• Inception phase:
– It establish the business case for the system and delimit the project scope.
– The business case includes success criteria, risk assessment, and estimate of the resources needed;

and a phase plan showing dates of major milestones.
– This phase produces vision document of the project, initial use-case model, initial risk assessment,

business model, and a project plan showing the phases and iterations.
– At this stage, customers will be clear with their requirement and life cycle objectives milestone will

be produced.

• Elaboration phase:
– It analyzes the problem domain, establish an architectural framework, develop the project plan, and

eliminate the highest risk elements of the project.
– The architectural decisions have to be made with an understanding of the whole system: its scope,

major functional and nonfunctional requirements.
– In the elaboration phase, an executable architecture prototype is built in one or more iterations,

depending on the scope, size, risk, and novelty of the project.
– At the end of the elaboration phase, the second important project milestone will be the life cycle

architecture milestone.
• Construction phase:

– During the construction phase, all application features are developed, integrated, and thoroughly
tested.

– This phase also focuses on the user manuals and the current release details.
– At the end of this phase, a beta release becomes operational for the customers.

• Transition phase:
– The purpose of the transition phase is to move the software product to the user community for

working.
– This phase includes several iterations, including beta releases, general availability releases, as well as

bug-fix and enhancement releases.
– Effort is made in developing user-oriented documentation, training users, supporting users in their

initial product use, and reacting to user feedback.
• Each phase in the RUP can be further broken down into iterations.
• Each iteration in the RUP mitigates risks, manage changes, provide reuse, and produces better quality

products as compared to the traditional waterfall process.
• The RUP is suitable for small development teams as well as large development organizations.
• It can be found in a simple and clear process architecture that provides commonality across a family of

processes.
• Workflow represents the sequence of activities that produces a result of the observable value.
• Workflows are divided into six core workflows (business modeling workflow, requirements workflow,

analysis and design workflow, implementation workflow, test workflow, deployment workflow) and three

Software Engineering (R13)

20

supporting workflows (project management workflow, configuration and change management workflow,
and environment workflow).

• The RUP is a complete methodology in itself that emphasizes documentation.
• It helps to proactively resolve project risks related with changing requirements.
• The RUP process is openly published, distributed, and supported for operation.
• It requires less time for integration of reusable components as the process of integration goes on throughout

the software development life cycle.
• However, some expertise is required to develop software using this methodology.
• The development process is very complex and not well organized.

