

UNIT 6

Software Quality: Software Quality Factors, Verification & Validation, Software Quality

Assurance, The Capability

Maturity Model

Software Maintenance: Software maintenance, Maintenance Process Models, Maintenance

Cost, Reengineering, Reengineering activities, Software Reuse.

Introduction

• Once software is tested, it is assumed that it is defect free and it will perform according

to the needs of the customer.

• As a software product is to be used for a long time, it is important to measure its quality

for better reliability and durability.

• Measuring the reliability of software products has been a major issue for the developer

and the customer.

• A good quality product satisfies the customer needs, is constructed as per the standards

and norms, has sound internal design, and is developed within an optimized cost and

schedule.

• The internal design of software is much more important than the external design.

• The quality of a software product is defined in terms of its characteristics or attributes.

• The values of attributes vary from product to product.

• A product can be of good quality or bad quality. Weaker values of attributes define a

bad-quality product whereas higher values of attributes define a good-quality product.

• The aim of software development organizations is to produce a high-quality product.

• The external quality of a product does not always ensure the internal quality.

• It is analogous to the quality of a building.

Software Quality Concept

• A good quality product aims to satisfy the customer requirements, developed under the

guidelines of software quality standards.

• Cost and schedule also play important roles in defining the quality of software.

• The process of development can affect the product quality.

• A standard process provides a systematic approach to development and leads to a high-

quality product.

• Quality of software can be defined in terms of following points.

 satisfies customer requirements

 possesses higher values of its characteristics

 has sound internal design along with external design

 is developed within the budget and cost

 follows the development standards

Software Quality Factors

• McCall, Richards, and Walters have proposed certain factors that affect the quality of

software:

• These factors are classified into the following categories:

– Product operational factors: Correctness, reliability, usability, integrity, and

efficiency

– Product revision factors: Maintainability, flexibility, and testability

– Product adaptability factors: Portability, reusability, and interoperability

Classification of Software quality factors

 Correctness: A program is correct if it performs according to the specifications of

functions it should provide.

 Reliability is the extent to which a program performs its intended functions satisfactorily

with required precision without failure in a specified duration.

 Usability is the extent of effort required to learn, operate, and use a product.

 Integrity is the extent of effort to control illegal access to data and program by

unauthorized people.

 Efficiency is the volume of computing resources (e.g., processor time, memory space,

bandwidth in communication devices, etc.) and code required to perform software

functions.

 Maintainability is the ease to locate and correct errors. Maintainability of a software is

measured through mean time to change.

 Flexibility is the cost required to modify an operational program.

 Testability is the effort required to test a program to ensure that it performs its intended

function.

 Portability is the effort required for transferring software products to various hardware

and software environments.

 Reusability is the extent to which software or its parts can be reused in the development

of some other software.

 Interoperability is the effort required to couple one system to another. Strong coupling

and loose coupling are the approaches used in interoperability.

Verification and Validation (V&V)

• The software product being developed must be checked during development and post-

development phases.

• Verification and Validation (V&V) is the process of checking a software product to

ensure that it meets the specifications and satisfies the intended purpose.

• The V&V activities begin with requirements specification review and continue to design

reviews to code inspection during testing.

• Verification is the process of evaluating work products in software development phases

to assess whether the work product meets the specifications as intended for the purpose.

• IEEE defines, “verification is the act of reviewing, inspecting, testing, checking,

auditing, or otherwise establishing and documenting whether product, process, service,

or documents conform to the specified requirements.”

• Validation is the process of evaluating software during or at the end of the development

process to determine whether it satisfies the specified stated requirements.

• IEEE defines, “validation in the process of evaluating software at the end of the software

development process to determine compliance with the requirement.” Validation is the

end-to-end verification.

• Berry Boehm defines and differentiates verification and validation as:

 Verification: “Are we building the right product?”

 Validation: “Are we building the product right?”

• Verification and validation ensure that the software performs no unintended functions

and provides information about its quality and reliability.

• The ultimate goal of verification and validation is to establish confidence that the

software system is “fit-for purpose.”

Software Quality Assurance (SQA)

• “assurance” means “guarantee”. So, software quality assurance (SQA) guarantees high

quality of software.

• IEEE defines quality assurance as a planned and systematic pattern of all actions

necessary to produce adequate confidence that the item or product conforms to

established technical requirements .

• Quality assurance activities are different from development and maintenance activities.

• Software quality assurance is a preventive approach of quality.

• Its goal is to provide and implement activities within the quality system that assist in

getting confidence to ensure that the work product will fulfill the requirements of

quality.

SQA Activities

• The quality assurance activities are performed at two levels, namely, the activities

performed by the software development team and the activities performed by the quality

assurance team.

• The software development team focuses on applying technical methods and tools in

achieving product

quality.

• Following methods are performed by the development team to ensure product quality:

 Applying technical methods and tools

 Conducting verification and validation

 Performing measurements

 Performing testing

• The SQA team performs the following activities:

 Prepares SQA plan

 Participates in process execution for development

 Reviews software engineering activities to verify compliance with the defined

software process

 Software auditing

 Record keeping

 Reporting

SQA Plan

 The following activities are included in the SQA plan:

 Purpose, scope, and objectives of the SQA plan

 Documents referenced in the plan

 Design of organizational structure for performing and reporting quality tasks

 Documents to be prepared and verified

 Standards, practices, and conventions to be used

 Tools, techniques, and methodologies

 Reviews and audits to be conducted

 Configuration management planning

 Practices and procedures for reporting, tracking, and resolving software

problems

 Maintaining SQA records

 Code control

 Media control and backup

 Supplier control

The Capability Maturity Model (CMM)

• The Capability Maturity Model (CMM) is an industry standard model for defining and

measuring the maturity of the development process and for providing strategy for

improving the software processes toward achieving high-quality products.

• It was established by Software Engineering Institute (SEI) in 1986 at Carnegie Mellon

University (CMU) at California, U.S.A, under the direction of the U.S. Department of

Defense.

• The CMM is involved in the process management process to improve the software

process whereas life cycle models are used for the software development process.

• The SEI-CMM is a reference model for appraising the maturity of the software process

at different levels.

• The CMM provides a way to develop and refine an organization's processes.

• A maturity model can be used as a benchmark for assessing different organizations for

equivalent comparison.

• It describes the maturity of the company in the above stated levels based upon the project

the company is dealing with and the clients.

• Within each of these maturity levels, there are defined key process areas (KPAs) which

characterize that level.

• An organization willing to achieve a level has to demonstrate all the KPAs in the

corresponding level of CMM.

Software Maintenance

• IEEE defines, “software maintenance is the process of modifying a software system or

component after delivery to correct faults, improve performances, or other attributes; or

adapt to a changed environment.”

• The main purpose of maintenance is to keep the system up and running after delivery.

• tƛƎƻǎƪƛ ǎǘŀǘŜǎΣ άSoftware maintenance is the totality of activities required to provide cost-

effective support to a software system. Activities are performed during the pre-delivery stage

as well as the post-delivery stage. Pre-delivery activities include planning for post-delivery

operations, supportability, and logistics determination. Post-delivery activities include

software modification, training, and operating a helpdesk

• Categories of Maintenance

• Corrective maintenance

– fixing defects or failures

• Adaptive maintenance

– changes due to operating environment changes

• Perfective maintenance

– improve performance or maintainability

• Preventive maintenance

– update the software in anticipation of any future problems

– Emergency maintenance

– repair or replacement of facility components or equipment requiring immediate

attention

Maintenance Process Models

• The process models organize maintenance into a sequence of related activities, or phases,

and define the order in which these phases are to be executed.

• Some models are:

– Quick-Fix Model

– Osborne’s Model

– Iterative-Enhancement Model

– Full-Reuse Model

– IEEE 1219 model

– ISO-12207 model

Quick-Fix Model

• The quick-fix model is an ad hoc approach to the maintenance

• Its approach is to work on the code first and then make necessary changes to the

accompanying documentation

• The idea is to identify the problem and fix it as

early as possible.

• After the code has been changed, it may affect

requirement, design, testing; and any other form

of available documents impacted by the

modification should be updated.

• Due to time constraint, this model does not pay

attention to the long-term effects.

• Changes are often made without proper planning, design, impact analysis, and regression

testing.

• Also, repeated changes may demolish the original design, thus making future modifications

progressively more expensive to carry out.

 hǎōƻǊƴŜΩǎ aƻŘŜƭ

• ¢ƘŜ hǎōƻǊƴŜΩǎ ƳƻŘŜƭ ƛǎ ŎƻƴŎŜǊƴŜŘ ǿƛǘƘ ǘƘŜ ǊŜŀƭƛǘȅ ƻŦ ǘƘŜ ƳŀƛƴǘŜƴŀƴŎŜ ŜƴǾƛǊƻƴƳŜƴǘΦ

• This model assumes that the technical problems that arise during maintenance are due to

poor communication between and control of the management.

• According to the Osborne strategies, maintenance requirements need to be included in the

change specification; a quality assurance program is required to establish quality assurance

requirements, and a metrics needs to be developed in order to verify that the maintenance

goals have been met.

Iterative-Enhancement Model

• This model considers that making changes in a system throughout its lifetime is an iterative

process.

• The iterative-enhancement model assumes that the requirements of a system cannot be

gathered and fully understood initially.

• The system is to be developed in builds. Each build completes, corrects, and refines the

requirements of the previous builds based on the feedback of users.

• The construction of a build in the iteration (i.e., maintenance) begins with the analysis of the

ŜȄƛǎǘƛƴƎ ǎȅǎǘŜƳΩǎ ǊŜǉǳƛǊŜƳŜƴǘǎΣ ŘŜǎƛƎƴΣ ŎƻŘŜΣ ŀƴŘ ǘŜǎǘΤ ŀƴŘ ŎƻƴǘƛƴǳŜǎ ǿƛǘƘ ǘƘŜ ƳƻŘƛŦƛŎŀǘƛƻƴ

of the highest-level document affected by changes..

• A key advantage of the iterative-enhancement

model is that documentation is kept updated as the

code changes.

• The iterative-enhancement model keeps the system

maintainable as compared to the quick-fix model.

• Also, the maintenance changes are faster in

iterative-enhancement.

• This model is observed to be ineffective if there is

unavailability of complete documentation.

• The iterative-enhancement model is well suited for

systems that have a long life and evolve over time.

Full-Reuse Model

• Here, maintenance is considered as reuse-oriented software development, where reusable

components are used for maintenance and replacements for faulty components.

• It begins with requirements analysis and design of a new system and reuses the appropriate

requirements, design, code, and tests from the earlier versions of the existing system.

• The reuse repository plays an important role in the full-reuse model.

• It also promotes the development of more reusable components.

• The full-reuse model is more suited for the development of lines of related products.

• This model takes some initial cost to institutionalize the reuse environment.

• The full-reuse model is especially important for the maintenance of component-based

systems or reengineering-type projects that are to be migrated onto a component-based

platform.

IEEE 1219 Model

• The IEEE standard organizes the maintenance process in seven phases.

• The phases are classification and identification, analysis, design, implementation, system

test, acceptance test, and delivery.

• Initially, modification requests are generated by the user, customer, programmer, or the

manager of the maintenance team.

•

ISO-12207 Model

• The ISO-12207 standard organizes the maintenance process in six phases.

• The phases are process implementation, problem and modification analysis, modification

implementation, maintenance review/acceptance, migration, and software retirement.

• Initially, modification requests are generated by the user, customer, programmer, or the

manager of the maintenance team.

Maintenance cost

Analysis

Design

Impleme-
ntation

System
test

Acceptan
-ce test

Delivery

Classific-
ation and
identifica

tion

• The maintenance cost can be reduced if the defects are taken care of in earlier phases of

development.

• The maintenance cost varies from application to application.

• Initially, modification requests are generated by the user, customer, programmer, or the

manager of the maintenance team.

• Berry Boehm has proposed a formula, ACT, for estimating the maintenance cost as part of

the COCOMO estimation model.

• ACT is defined ŀǎ άǘƘŜ ŦǊŀŎǘƛƻƴ ƻŦ ŀ ǎƻŦǘǿŀǊŜ ǇǊƻŘǳŎǘΩǎ ǎƻǳǊŎŜ ƛƴǎǘǊǳŎǘƛƻƴǎ ǿƘƛŎƘ ǳƴŘŜǊƎƻŜǎ

ŎƘŀƴƎŜ ŘǳǊƛƴƎ ŀ ȅŜŀǊ ǘƘǊƻǳƎƘ ŀŘŘƛǘƛƻƴΣ ŘŜƭŜǘƛƻƴΣ ƻǊ ƳƻŘƛŦƛŎŀǘƛƻƴΦέ

• ACT is related to the number of change requests as follows:

 KLOCadded + KLOCdeleted

 ACT = KLOCtotal

• Where KLOCadded is the total lines of code added during maintenance. KLOCdeleted is the total

lines of code deleted during maintenance.

• The maintenance effort in person-months can be calculated as follows:

 Maintenance effort = ACT x Development effort

• Software projects have different characteristics. The maintenance effort varies from project

to project.

• Therefore, effort adjustment factors (EAF) are considered for accurate estimation of the

maintenance effort. Considering EAFs, the maintenance effort is calculated as follows:

 Maintenance effort = ACT x Development x EAF

Need of reengineering:

• In legacy systems, the following symptoms are observed:

– Poor documentation or its nonexistence

– Complexity of the code and program structure

– Inability to satisfy customer requirements

– Low business value

– Obsolete technology

– High maintenance cost

– High frequency of occurrences of failures

– Constant need to update and renovate the system

– Feel obsolete to operate due to aging

What is Reengineering?

• Continuous maintenance of these systems becomes tedious and the cost approaches to the

business cost.

• These systems are too difficult to maintain and enhance continuously and are too important

to be discarded because old systems have a high business value.

• One possible solution for legacy systems is to transform them onto a modern platform to

meet the defined quality goals. Hence, reengineering becomes more and more important.

• “Reengineering is the process of analyzing and representing a subject system at a higher

level of abstraction to reconstitute it into a form and the subsequent implementation of the

new form.”

• The reengineering process involves the following activities for managing reengineering

projects:

• Reengineering team formation

• Inventory analysis

• Project feasibility, preliminary investigation, and verification of the existing artifacts

• Program comprehension

• Reengineering requirements analysis

• Planning for reengineering

• Acquiring, instantiating, modifying, and integrating reusable assets

• Reverse engineering and forward engineering

• Preparing test plan, test cases, and test data

• Testing of reengineered system

• Redocumentation

• Reengineering = Reverse engineering + ∆ + Forward engineering

• ²ƘŜǊŜ ҟ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŎƘŀƴƎŜǎ ƳŀŘŜ ƛƴ ǘƘŜ ŎŀƴŘƛŘŀǘŜ ǎȅǎǘŜƳΦ ¢ƘŜ ǊŜŜƴƎƛƴŜŜǊƛƴƎ ǇǊƻŎŜǎǎ

represents the candidate system at a very high level of representation through reverse

Reengineering Process

Reengineering Activities

• Reverse engineering

• Forward engineering

• Program comprehension

• Restructuring

• Design recovery

• Re-documentation

Reverse Engineering

• Reverse engineering is the process of recovering the design

specifications of an existing business system from its

implementation and representing it at a much higher level of

abstraction .

• Reverse engineering techniques can be performed to extract

data, architecture, design information, and content of a

procedural system.

• Reverse engineering techniques provide the means for recovering

the lost information and developing alternative representations

of a system, such as generation of structure charts, dataflow

diagrams, entity-relationship diagrams, etc.

Forward Engineering

• Once reverse engineering has been performed and all important artifacts have been

recovered, forward engineering is performed.

• Forward reengineering is the traditional process of moving from high-level abstraction using

logical design to physical implementation.

• Forward engineering moves from a higher-level abstract representations and design details

to implementation level of the system.

• Design details such as object models, use case diagrams, pseudo codes, etc., can be

converted to object-oriented programming languages.

Program Comprehension

• Program comprehension is an essential part of software evolution and software

maintenance.

• Software that is not comprehended cannot be changed.

• Frequently in program comprehension the programmer understands domain concepts, but

not the code. The knowledge of domain concepts is based on program use and therefore it is

easier to acquire than knowledge of the code.

• Program comprehension is the root of the reverse engineering process. It is the process of

acquiring or extracting knowledge about the software artifacts such as code, design,

document, etc.

Restructuring

• Restructuring transforms the system from one representation form to another at the same

level of abstraction.

• Restructuring modifies the code and data that are adaptable to future changes. It preserves

semantics and functionality between the new and old representations.

• Mainly, it has two major aspects, namely, code restructuring and data restructuring.

• Code restructuring produces designs with higher quality than the existing one.

• Data restructuring is performed to extract the data items and objects to understand data

flow and the existing data structure.

Design Recovery

• Design recovery recreates design abstractions from a combination of code, existing design

documentation, personal experience, and general knowledge about problem and application

domains.

• The recovered design abstractions must include conventional software engineering

representations such as formal specifications, module breakdowns, data abstractions, data

flows, and program description language.

• Design recovery is performed across a spectrum of activities from software development to

maintenance.

• A key objective of design recovery is to develop structures that will help the software

engineer to understand a software system.

Re-documentation

• Re-documentation is the process of creating a semantically equivalent representation at the

corresponding levels of abstraction.

• In this aspect, system documents are updated/rewritten/replaced to document the target

system.

• Various documents that may be affected in legacy software include requirement

specifications, design and implementation, design decision report, configuration, data

dictionary, user and reference manuals, and the change document.

• The process of re-documentation is similar to reverse engineering activities.

Following emerging software engineering disciplines that provide the required quality software

products:

• Software reuse

• Aspect-oriented software engineering

• Service-oriented software engineering

• Usability engineering

• Model-driven software engineering

• Client-server software engineering

• Computer-aided software engineering (CASE)

Software reuse

• Software reuse is the process of producing software systems from existing software systems

rather than building software from scratch.

• Reusability is the degree to which a reuse entity can be reused. It has two major aspects,

namely, usability and usefulness.

• Usability is the degree to which an asset is easy to use in the sense of the amount of effort

that is needed to use an asset.

• It involves comprehensibility, compliance with standards, ease of development, etc.

Usefulness is the frequency of suitability for use.

Reusable Components

• Reusable components are self-contained entities which may be any software document or

work product generated during the software development process

• A component can be any well engineered and documented software life cycle object or

software part.

• An artifact is the result of software development activity.

• A component can be made reusable by measuring the adaptability, extendibility, and

concurrency features of reusable components.

Software Development with Reuse

Domain Engineering

• Domain engineering identifies reusable artifacts and operations in a set of related systems

having similar functionalities in specific functional areas, along with the roles and

responsibilities.

• A reuse domain is basically a set of application areas.

• The reusable components under domain analysis can be identified by the domain concepts,

techniques, technologies, terminologies, and by reviewing among peers.

• For example, reuse domain can be a business software domain, accounting software

domain, banking software domain, telecommunication domain, and system software

domain.

• Identified reusable components can be classified according to the application domain. The

classified reusable components are stored systematically into physical devices for faster

retrieval to integrate them with the system under development.

Reuse Repository

• A reuse repository system is a kind of software library where reusable components are

managed systematically for easy access for future development.

• The efficiency of a repository is mainly based on the organization of reusable components i.

e. connectivity among reusable components and their retrieval for reuse depends on the

effectiveness of repository.

• There exist several reuse repositories that heavily rely on data structures, such as link lists,

indexing, prototyping, etc.

• The identification and classification component is responsible for the generation of reusable

components using domain analysis, classification of reusable components, and defining

interfaces.

Component Searching and Retrieval

• The searching process allows developers to put queries in natural languages, including

keywords.

• The searching and matching of reusable artifacts according to the application domain make

the retrieval process faster.

• A major part of Component Searching and Retrieval approach is signature matching.

• Signature matching is the process of checking the compatibility of two components in terms

of their signatures.

• Retrieval of reusable components from reuse repository goes through the searching and

signature matching process.

Refinement and Integration

• Refinement of reusable components deals with the relevance and applicability of the

retrieved components with the working context.

• Refinement of the retrieved components is needed for specialization, restriction, extension,

optimization, implementation, and convenience.

• The integration of reusable components highly reflects from the type of interfaces and their

signatures.

Reuse Measurement

• Reuse metric is a quantitative measurement of an attribute of a reusable component.

• Reusable components that need to be measured can be architectural, such as stability and

extendibility, component level, and application system.

• The amount of reuse is the quantity of reuse in a given product in terms of size.

• Size is some measure of the amount of text or function within a work product.

• Let a software system S consist of components C1, C2…Cn. Size of a system S can be described

as a function Size(S) with the following properties:

• Size of a system S can be described as a function Size(S) with the following properties:

• Size cannot be negative.

• Size is expected to be zero when a system does not contain any component.

• When components do not have elements in common, size will be additive .

• Reuse rate is defined as the ratio of the size of work products designed from reusable

components to the size of the system. Therefore,

• Reuse rate = R ͬ = Reused software /Total software

• Reuse(S) = ∑Reuse(C); where C is a reusable component of S

• Reuse level = Reuse(S /Size(S)

• The total cost saving of reusable asset can be deduced by weighting the costs and benefits of

the producer as well as the costs and benefits of the consumer.

• Total cost of system development with reuse (CS) =

– Cost of reused software + Cost of software without reuse

 = (Relative cost of reuse software × reused software) + (Relative cost of software

without reuse × software without reuse)

• Total cost saving for system development with reuse =

 Cost of system development without reuse ς Cost of system development with reuse.

Reuse Benefits

• Adopting reuse-based software development process attracts a number of well-recognized

economic and psychological benefits to both end users and developers

• Savings in development costs and time.

• Improve in productivity of the organization.

• Increase in reliability.

• Increase in quality.

• Increase in the ease of maintenance.

• Improvement in documentation and testing.

• High-speed and low-cost replacement of aging systems.

• Improvement in the predictability of the process

Reuse Barriers

• Some of the claims are as follows:

• It takes too much effort and time to introduce reuse in an organization.

• Reuse of components may lead to legal responsibility in case of software failure.

• Management is not trained in software development methods with reuse.

• Risks of wrong component selection

• Worry about ongoing support

• Trade-offs require adapting certain components.

• Worries about component quality

• Uncertain internal costing to compare costs

• Availability of quality, high-value components

Success Factors of Reuse

• Managerial and organizational

• Economical

• Technical

• Psychological

• Political

• Legal

• Failure Factors of Reuse

• Focus on domain analysis and adopt a product line approach

• Focus on achieving black-box reuse

• Establish reuse-oriented development process and organization

• Adopt reuse in an incremental manner

• Produce large volume of software

• Certify reuse components to build trust and ensure quality

• Plan reuse program over a long period of time

• Organize training for staff

• Create incentives for individuals/engineers for doing reuse

• Developer reuse experience

• Keep track of technological development to avoid obsolescence

• Use reuse metrics in order to manage reuse program

